跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:8e11:74e4:2207:41a8) 您好!臺灣時間:2025/01/15 17:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:孫佩豪
研究生(外文):Pei-Hao Sun
論文名稱:由柯莫氏因子、穿越頻率和尖端頻率的量測結果推算細胞的介電性質
論文名稱(外文):Extraction of the Cell Properties from the Measurements of Clausius-Mossotti Factor, Crossover Frequency and Peak Frequency
指導教授:李雨李雨引用關係
口試委員:胡文聰楊政穎
口試日期:2011-07-26
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:91
中文關鍵詞:柯莫氏因子穿越頻率尖端頻率介電性質電容值電導值導電度介電係數
外文關鍵詞:Clausis-Mossotti factorcrossover frequencypeak frequencydielectric propertiescapacitanceconductanceconductivitypermittivity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:138
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
The goal of this thesis is to study how to extract the dielectric properties of cells from the measurements of the real part of the Clausis-Mossotti factor (CMF), the crossover frequency ( ) of dielectrophoresis, and the peak frequency ( ) of electrorotation. Both the theory and the calculation procedures are proposed and demonstrated using the experimental data in the literature, together with some additional CMF measurements in the present study, which includes the measurements of lung cancer cells CL1-0 and CL1-5, and the colorectal cancer cell Colo205.
In the present CMF measurement as well as those in the literature, CMF was measured for different applied electric frequencies (from 10 kHz to 40 MHz) and medium conductivity (from 0.01 – 1 S/m). The dielectric properties of cells can be extracted according to the definition of CMF together with a suitable cell model using the optimization method. The membrane capacitance (permittivity divided by the membrane thickness) differs slightly for various cells, and are found to be 4.97~5.92 for different frequencies for CL1-0, CL1-5 and Colo205. However, the membrane conductance (conductivity divided by membrane thickness) of CL1-5 (more invasive in comparing with CL1-0) is 921~997 , which is about twice greater than those of CL1-0 and Colo205 (561~603 ). The cytoplasm conductivity is 0.842~1.165 for these three cells. The cytoplasm relative permittivity is 72~101 for CL1-5, which is slightly less than 78~142 for CL1-0 and Colo205. The dispersion phenomenon, i.e., the variation of properties with applied electric frequency, is observed for both the cytoplasm conductivity and permittivity.
There exists theory and method for extracting the cell properties from the experimental data of and in the literature. However, it was also found that the membrane conductance extracted from is three times greater than that from when the medium conductivity is of order of 0.1 S/m. Through a theoretical scaling analysis, it was found in the present study that the discrepancy is due to the DC limit approximation employed in the previous theory. A modified theory was thus proposed and validated in the present thesis. With the modified theory, it was found that the membrane capacitance are 7.95, 7.27 and 5.24 , the membrane conductance are 662, 1245 and 512 , the cytoplasm conductivity are 0.935, 0.862 and 0.828 S/m, and the cytoplasm relative permittivity are 93, 114 and 153, respectively, for CL1-0, CL1-5 and Colo205. Note that the above values agree with those obtained using CMF data.


致謝 I
摘要 II
Abstract IV
目錄 VI
圖目錄 VIII
表目錄 X
第一章 緒論 1
1-1 研究動機與背景 1
1-2 研究目的 2
1-3文獻回顧 2
1-4本文架構 4
第二章 理論 6
2-1 有效偶極矩與柯莫氏因子 6
2-2 等效圓球模型 8
2-3 介電泳力 11
2-4 流體拖曳黏滯力 14
2-5 生物微粒電性的計算 15
2-5-1 利用柯莫式因子計算細胞電性 15
2-5-2 利用穿越頻率以及尖端頻率計算細胞電性 16
2-5-2-1 現有理論 16
2-5-2-2 現有理論的改進 18
2-5-3 最佳化計算 22
第三章 實驗方法與設備 25
3-1 實驗晶片 25
3-2 實驗設備 27
3-3 實驗步驟 28
3-3-1 柯莫氏因子的量測 28
3-3-2 穿越頻率的量測 28
3-4 生物微粒與實驗溶液 29
3-4-1 細胞培養液的製備 29
3-4-2 細胞培養 30
第四章 結果與討論 32
4-1 柯莫氏因子的量測與細胞電性分析 32
4-1-1理論 32
4-1-2實驗結果 35
4-1-2-1柯莫氏因子之量測結果 35
4-1-2-2 細胞電性分析 36
4-1-2-3 細胞dispersion效應分析 36
4-2 使用穿越頻率和尖端頻率計算細胞電性的理論分析與傳統理論的改進 37
4-3 穿越頻率的量測與細胞電性分析 40
4-3-1穿越頻率量測結果 40
4-3-2細胞電性分析 41
第五章 結論與展望 42
5-1 結論 42
5-1-1 柯莫氏因子的量測與細胞電性分析結果 42
5-1-2使用穿越頻率和尖端頻率計算細胞電性的理論分析與現有理論的改進 43
5-1-3穿越頻率的量測與細胞電性分析 44
5-2 未來展望 45
參考文獻與書目 46



1. Fung T.W.,”Study of the cell separation and Delivery Using Dielectrophoresis”,
National Taiwan University Master Thesis, 2009.
2. Griffith D.J., “Introduction to Electrodynamics,” Prentice Hall, New Jersey, 1999.
3. Happel J. and Brenner H.,”Low Reynold number hydrodynamics”, Martinus Nijhoff
Publisher 1986.
4. Ho C.T.,Lin R.Z.,Chang W.Y., Chang H.Y., and Liu C.H.,”Rapid heterogeneous
liver-cell on-chip patterning via the enhanced field-induced dielectrophoriese trap”,
Lab on Chip 6, 724-734,2006.
5. Hu X.Y., Bessette P.H., Qian J.R., Meinhart C.D., Daugherty P.S., and Soh
H.T.,”Marker-specific sorting of rare cells using dieletrophoriese”, Proceedings of
the National Academy of Sciences of the United States of America 102 (44),
15757-15761,2005.
6. Hughes M. P., “Nanoelectromechanics in Engineering and Biology”, CRC PRESS,
London, 2003.
7. Jan Gimsa, Torsten MOller, Thomas Schnelle, and Guinter Fuhr,” Dielectric
Spectroscopy of Single Human Erythrocytes at Physiological Ionic Strength:
Dispersion of the Cytoplasm”, Biophysical Journal Volume 71 July 1996 495-506.
8. Jones T. B., “Electromechanics of Particles”, Cambridge University Press,
Cambridge, 1995.
9. Lin Y.M.,”Seperation of bio-particles ny dielectricphoresis and microfluidics”,
National Taiwan University Master Thesis, 2010.
10. Lo Y. J. and U. Lei, “Quasi-static force and torque on spherical particles under generalized dielectrophoresis in the vicinity of walls”, Applied Physics Letters, vol.
95, 253701, 2009.
11. Lo Y. J., “Generalized Dielectrophoresis near Walls – Theory, Experiment and
Application”, National Taiwan University Doctoral Dissertation, 2010.
12. Lo Y.J. and U. Lei, “Measurement of the Clausius-Mossotti factor for
dielectrophoresis,” The Second Conference on Advances in Microfluidics and
Nanofluidics and Asian-Pacific International Symposium on Lab on Chip
(AMN-APLOC 2011), Paper number: AMNA00107-00216, 5 - 7 January 2011,
Singapore.
13. Markx G. H., M. S. Talary, R. Pethig, “Separation of viable and non-viable yeast
using dielectrophoresis”, Journal of Biotechnology, vol. 32, pp.29-37, 1994.
14. Pohl H.A., “Dielectrophoresis the behavior of neutral matter in nonuniform electric
fields”, Cambridge, Cambridge University Press, 1978.
15. R. Pethig, L.M. Jakubek, R.H. Sanger, E. Heart, E.D. Corson and P.J.S. Smith,”
Electrokinetic measurements of membrane capacitance and conductance for
pancreatic b-cells”, IEE Proc.-Nanobiotechnol., Vol. 152, No. 6, December 2005.
16. T.B. Jones and G.A.Kkallio,” Dielectrophoretic levitation of spheres and shells”,
Journal of Electrostatics, 6 (1979) 207—224.
17. Wang X. B., Y. Huang, R. Holzel, J. P. H. Burt, R. Pethig, “Theoretical and
experimental investigations of the interdependence of the dielectric,
dielectrophoretic and electrorotational behaviour of colloidal particles”, J. Phys. D:
Appl. Phys., vol. 26, pp.312-322, 1993.
18. W.M. Arnold and U. Zimmermann,” Electro-rotation: development of a technique
for dielectric measurements on individual cells and particles”, Journal of
Electrostatics, 21 (1988) 151-191.
19. Yang C. Y., U. Lei, “Dielectrophoretic force and torque on an ellipsoid in an
arbitrary time varying electric field,” Applied Physics letters, vol. 90, 153901, 2007.
20. Ying Huang, Xiao-Bo Wang, Frederick F. Becker, Peter R.C. Gascoyne,”
Membrane changes associated with the temperature-sensitive
P85gag-m°s-dependent transformation of rat kidney cells as determined by
dielectrophoresis and electrorotation”, Biochimica et Biophysica Acta 1282 (1996)
76-84.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top