跳到主要內容

臺灣博碩士論文加值系統

(44.211.84.185) 您好!臺灣時間:2023/05/30 06:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳彥廷
研究生(外文):Yan-Ting Chen
論文名稱:板波在週期性漸變結構中聚焦行為之研究
論文名稱(外文):Focusing Behavior of Plate Wave by using Gradient-Index Phononic Crystal
指導教授:吳政忠
指導教授(外文):Tsung-Tsong Wu
口試委員:陳永裕許進成孫嘉宏
口試日期:2011-07-28
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:60
中文關鍵詞:聲子晶體板波有限元素法頻散等平面
外文關鍵詞:Phononic crystalLamb waveFinite element methodBand structureEqual frequency surface
相關次數:
  • 被引用被引用:0
  • 點閱點閱:233
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
類比於光子晶體的頻溝與負折射現象,聲波在週期性排列的彈性複合材料中亦有類似的特性,此種複合材料,一般稱為聲子晶體。聲子晶體的頻溝及負折射現象,可應用於聲波濾波器或平面聲波透鏡,阻止特定頻率入射的聲子傳遞或產生小於繞射極限的聲波聚焦。
本文以數值方法探討板波在週期性漸變聲子晶體平板結構中之聚焦現象。首先使用有限元素法 (finite element method, FEM)結合布拉格(Bloch)理論,建立週期性邊界條件以分析聲子晶體結構之頻散關係與特徵位移場。為瞭解不同模態在板中之波傳行為,文中分析最簡布履淵區邊界的頻散關係,並進一步取其等頻率面以檢視其非等向性。
研究中採用光學漸變指數(Gradient-Index Optics)設計彈性波波傳的漸變結構。首先分析在不同頻率下填充率和折射指數之關係,並探討影響聚焦現象的各種參數,如板厚等。
本文亦提出關於板波於漸變結構中聚焦行為之可能應用,即以此漸變聲子晶體平板結構當作板波的波束壓縮裝置,用來將較寬的板波導入狹窄的潑導中。模擬結果顯示,經由適當設計的週期性漸變結構可使反對稱板波波傳達到聚焦效果並可用於板波波束的壓縮。此波導壓縮裝置其使用的頻率範圍可達到設計頻率的23%。
最後,本研究進行漸變型聲子晶體聚焦行為之模型實驗,以低頻壓電線波源激發板波,並以光學干涉儀接收不同位置的訊號,實驗結果成功證實漸變型聲子晶體聚焦之特性。


Similar to the photonic crystals, band gap and negative refraction also exist in the cases of acoustic waves in periodically arranged composites called phononic crystals and can potentially be applied to the filter and flat lens.
In this thesis, we demonstrate the focusing behavior of a gradient-index phononic crystal numerically by finite element (FE) method and experimentally by ultrasonic experiments. In order to understand the propagation behavior of different modes in a plate, we analyzed the band structure, and further to determine the mode which is suitable for wave focusing by the equal frequency contour (EFC) analysis. Based on the study, the lowest anti-symmetric Lamb mode was employed due to its nearly isotropic EFC. Based on the concept of Gradient-Index optics, we designed the gradient index and calculated the relationship between the filling fraction and refraction index at various frequencies. We also discussed the effect of thickness on the focusing efficiency.
Finally, we demonstrate the feasibility of using GRIN PC as a beam width compressor. A plate waveguide with periodic stubbed surface is adopted to achieve a band gap with frequency around the operating frequency of the GRIN PC. The simulated results show good performance on compressing plate waves into the entrance of a narrow waveguide.


誌 謝 I
摘 要 II
ABSTRACT III
CONTENTS IV
LIST OF NOTATIONS VI
LIST OF FIGURES VII
LIST OF TABLES XI
Chapter1 Introduction 1
1-1 Literatures and Research Motivation 1
1-2 Contents of the Chapters 2
Chapter2 Focusing of Lamb waves in a GIRN PC Plate
5
2-1 Wave Propagation in Phononic Crystals 5
2-2 Analysis of Lamb Waves in a Plate with different filling fraction 8
2-3 Design the GRIN Phononic Crystal Plate 10
2-4 Influence of Plate Thickness on Focusing 12
2-4.1 Analysis of thickness on dispersion 12
2-4.2 Anisotropic property 13
2-5 Stuffing Tungsten in Silicon matrix 14
Chapter3 Utilization of the GIRN PC in a waveguide 28
3-1 Band Gaps and Dispersion Analysis of Lamb Waves in a Plate with Periodic Stubbed Surface 28
3-2 Phononic crystal Waveguide design 30
Chapter4 Evidence of Lamb wave Focusing in a GRIN PC plate 38
4-1Experimental set-up 38
4-2 Lamb wave measurements in a GRIN PC plate 39
Chapter5 Conclusions and Future Work 50
5-1 Conclusions 50
5-2 Future Works 51
References 54


1.E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett., 58, 2059-2062, 1987
2.E. Yablonovitch and T. J. Gmitter, “Photonic band structure: The face-centered-cubic case,” Phys. Rev. Lett., 63, 1950-1953, 1989.
3.H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B, 58, 10096, 1998.
4.M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B, 62, 10696, 2000.
5.C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65, 201104, 2002.
6.M.S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, “Acoustic Band Structure of Periodic Elastic Composites,” Phys. Rev. Lett., 71, 2022, 1993.
7.M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, “Acoustic Band Structure of Periodic Elastic Composites,” Phys. Rev. Lett., 71, 2022, 1993.
8.Y. Tanaka and S. Tamura, “Surface acoustic waves in two-dimensional periodic elastic structures,” Phys. Rev. B, 58, 7958, 1998.
9.G. Wang, X. Wen, J. Wen, L. Shao, and Y. Liu, “Two-dimensional locally resonant phononic crystals with binary structures,” Phys. Rev. Lett., 93, 154302 , 2004.
10.T.-T. Wu, Z.-G. Huang, and S. Lin, “Surface and bulk acoustic waves in two-dimensional phononic crystals consisting of materials with general anisotropy,” Phys. Rev. B, 69, 094301, 2004.
11.S. Benchabane, A. Khelif, J. Y. Rauch, L. Robert, and V. Laude, "Evidence for complete surface wave band gaps in a piezoelectric phononic crystal," Phys. Rev. E, 73, 065601, 2006.
12.T.-T. Wu, W.-S. Wang, J.-H. Sun, J.-C. Hsu, and Y.-Y. Chen, “Utilization of phononic-crystal reflective gratings in a layered SAW device,” Appl. Phys. Lett., 94, 101913, 2009.
13.C.-Y. Huang, J.-H. Sun, and T.-T. Wu, “A two-port ZnO/silicon Lamb wave resonator using phononic crystals,” Appl. Phys. Lett., 97, 031913, 2010.
14.S. Mohammadi, A. A. Eftekhar, W. D. Hunt, and A. Adibi, “High-Q micromechanical resonators in a two-dimensional phononic crystal slab,” Appl. Phys. Lett., 94, 051906, 2009.
15.J.-H. Sun and T.-T. Wu, “Propagation of surface acoustic waves through sharply bent two-dimensional phononic crystal waveguides using a finite-difference time-domain method,” Phys. Rev. B, 74, 174305, 2006.
16.F.-L. Hsiao, A. Khelif, H. Moubchir, A. Choujaa, C.-C. Chen, and V. Laude, “Waveguiding inside the complete band gap of a phononic crystal slab,” Phys. Rev. E, 76, 056601 (2007).
17.J. O. Vasseur, P. A. Deymier, B. Djafari-Rouhani, Y. Pennec, and A. C. Hladky-Hennion, “Absolute forbidden bands and waveguiding in two-dimensional phononic crystal plates ,” Phys. Rev. B, 77, 085415, 2008.
18.M.S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, “Acoustic Band Structure of Periodic Elastic Composites,” Phys. Rev. Lett., 71, 2022, 1993.
19R. Sainidou, B. Djafari-Rouhani, and J. O. Vasseur, “Surface Acoustic Waves in Finite Slabs of Three-Dimensional Phononic Crystals”, Phys. Rev. B, 77, 094304. , 2008.
20.Yukihiro Tanaka and Shin-ichiro Tamura, “Surface Acoustic Waves in Two-Dimensional Periodic Elastic Structure.” Phys. Rev. B, 58, 7958, 1998.
21.F. Meseguer, M. Holgado, D. Caballero, N. Benaches, J. Sanchez-Dehesa, C. Lopez, and J. Llinares, “Rayleigh-Wave Attenuation by a Semi-Infinite Two-Dimensional Elastic-Band-Gap Crystal”, Phys. Rev. B, 59, 12169, 1999.
22.T.-T. Wu, Z.-G. Huang and S. Lin,” Surface and Bulk Acoustic Waves in Two-Dimensional Phononic Crystal Consisting of Materials with General Anisotropy”, Phys. Rev. B, 69, 094301, 2004.
23.J.-C. Hsu and T.-T. Wu, “Efficient Formulation for Band-Structure Calculations of Two-Dimensional Phononic-Crystal Plates,” Phys. Rev. B, 74, 144303, 2006.
24.A. Khelif, B. Aoubiza, S. Mohammadi, A. Adibi, and V. Laude, “Complete Band Gaps in Two-Dimensional Phononic Crystal Slabs,” Phys. Rev. E, 74, 046610 , 2006.
25.X. Zhang and Z. Liu, “Negative refraction of acoustic waves in two-dimensional phononic crystals,” Appl. Phys. Lett., 85, 341, 2004.
26.L. Feng, X.-P. Liu, M.-H. Lu, Y.-B. Chen, Y.-F. Chen, Y.-W. Mao, J. Zi, Y.-Y. Zhu, S.-N. Zhu, and N.-B. Ming, “Acoustic Backward-Wave Negative Refractions in the Second Band of a Sonic Crystal,” Phys. Rev. Lett., 96, 014301, 2006.
27.X. Zhang and Z. Liu, “Negative refraction of acoustic waves in two-dimensional phononic crystals,” Appl. Phys. Lett., 85, 341, 2004.
28.L. Feng, X. P. Liu, Y. B. Chen, Z. P. Huang, Y. W. Mao, Y. F. Chen, J. Zi, and Y. Y. Zhu, “Negative refraction of acoustic waves in two-dimensional sonic crystals,” Phys. Rev. B, 72, 033108, 2005.
29.L. Feng, X.-P. Liu, M.-H. Lu, Y.-B. Chen, Y.-F. Chen, Y.-W. Mao, J. Zi, Y.-Y. Zhu, S.-N. Zhu, and N.-B. Ming, “Acoustic Backward-Wave Negative Refractions in the Second Band of a Sonic Crystal,” Phys. Rev. Lett., 96, 014301, 2006.
30.M. Z. Ke, Z. Y. Liu, Z. G. Cheng, J. Li, P. Peng, and J. Shi, “Flat superlens by using negative refraction in two-dimensional phononic crystals,” Solid State Commun 142, 177, 2007.
31.P. A. Deymier, B. Merheb, J. O. Vasseur, A. Sukhovich, and J. H. Page., “Focusing of acoustic waves by flat lenses made from negatively refracting two-dimensional phononic crystals,” Rev. Mex. Fis. S, 54, 74, 2008.
32.Z. J. He, F. Y. Cai, Y. Q. Ding, and Z. Y. Liu, “Subwavelength imaging of acoustic waves by a canalization mechanism in a two-dimensional phononic crystal,” Appl. Phys. Lett., 93, 233503, 2008.
33.L. Y. Wu, L. W. Chen, and R. C. C. Wang, “Dispersion characteristics of negative refraction sonic crystals,” Physica B, 403, 3599, 2008.
34.A. Sukhovich, L. Jing, and J. H. Page, “Negative refraction and focusing of ultrasound in two-dimensional phononic crystals,” Phys. Rev. B, 77, 014301 , 2008.
35.M. Farhat, S. Guenneau, S. Enoch, A. B. Movchan, and G. G. Petursson, “Focussing bending waves via negative refraction in perforated thin plates,” Appl. Phys. Lett., 96, 081909, 2010.
36.J. Pierre, O. Boyko, L. Belliard, J. O. Vasseur, and B. Bonello, “Negative refraction of zero order flexural Lamb waves through a two-dimensional phononic crystal ,” Appl. Phys. Lett., 97, 121919, 2010.
37.S.-C. S. Lin, T. J. Huang, J.-H. Sun, and T.-T. Wu, “Gradient-index phononic crystals,” Phys. Rev. B, 79, 094302,2009.
38.S.-C. S. Lin, B. R. Tittmann, J.-H. Sun, T.-T. Wu, and T. J. Huang, “Acoustic beamwidth compressor using gradient-index phononic crystals,” J Phys D Appl Phys, 42, 185502, 2009.
39.T.-C. Wu, T.-T. Wu, and J.-C. Hsu, “Waveguiding and frequency selection of Lamb waves in a plate with a periodic stubbed surface,” Phys. Rev. B, 79, 104306 , 2009.
40.We use C11= 167.5 GPa, C12 = 63.9 GPa, C44 = 79.6 GPa and density=2332 kg/m3.
41.Structural Mechanics, COMSOL Multiphysics, Manual, Comsol, AB, Stockholm, Sweden.
42.We use C11= 503 GPa, C12 = 199 GPa, C44 = 152 GPa and density=19200 Kg/m3.
43.C. Gomez-Reino, M. V. Perez, and C. Bao, Gradient-index Optics: Fundamentals and Applications (2002).
44.C. K. Lee, G. Y. Wu, Thomas C. T. Teng, W. J. Wu, C. T. Lin, W. H. Hsiao, H. C. Shih, J. S. Wang, Sam S. C. Lin, Colin C. Lin, C. F. Lee, and Y. C. Lin, “A High Performance Doppler Interferometer for Advanced Optical Storage Systems, ” Jap. Journal of Appl. Phys., 38, Part 1, No. 3B, pp. 1730-1741, 1999.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊