|
1.E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett., 58, 2059-2062, 1987 2.E. Yablonovitch and T. J. Gmitter, “Photonic band structure: The face-centered-cubic case,” Phys. Rev. Lett., 63, 1950-1953, 1989. 3.H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B, 58, 10096, 1998. 4.M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B, 62, 10696, 2000. 5.C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65, 201104, 2002. 6.M.S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, “Acoustic Band Structure of Periodic Elastic Composites,” Phys. Rev. Lett., 71, 2022, 1993. 7.M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, “Acoustic Band Structure of Periodic Elastic Composites,” Phys. Rev. Lett., 71, 2022, 1993. 8.Y. Tanaka and S. Tamura, “Surface acoustic waves in two-dimensional periodic elastic structures,” Phys. Rev. B, 58, 7958, 1998. 9.G. Wang, X. Wen, J. Wen, L. Shao, and Y. Liu, “Two-dimensional locally resonant phononic crystals with binary structures,” Phys. Rev. Lett., 93, 154302 , 2004. 10.T.-T. Wu, Z.-G. Huang, and S. Lin, “Surface and bulk acoustic waves in two-dimensional phononic crystals consisting of materials with general anisotropy,” Phys. Rev. B, 69, 094301, 2004. 11.S. Benchabane, A. Khelif, J. Y. Rauch, L. Robert, and V. Laude, "Evidence for complete surface wave band gaps in a piezoelectric phononic crystal," Phys. Rev. E, 73, 065601, 2006. 12.T.-T. Wu, W.-S. Wang, J.-H. Sun, J.-C. Hsu, and Y.-Y. Chen, “Utilization of phononic-crystal reflective gratings in a layered SAW device,” Appl. Phys. Lett., 94, 101913, 2009. 13.C.-Y. Huang, J.-H. Sun, and T.-T. Wu, “A two-port ZnO/silicon Lamb wave resonator using phononic crystals,” Appl. Phys. Lett., 97, 031913, 2010. 14.S. Mohammadi, A. A. Eftekhar, W. D. Hunt, and A. Adibi, “High-Q micromechanical resonators in a two-dimensional phononic crystal slab,” Appl. Phys. Lett., 94, 051906, 2009. 15.J.-H. Sun and T.-T. Wu, “Propagation of surface acoustic waves through sharply bent two-dimensional phononic crystal waveguides using a finite-difference time-domain method,” Phys. Rev. B, 74, 174305, 2006. 16.F.-L. Hsiao, A. Khelif, H. Moubchir, A. Choujaa, C.-C. Chen, and V. Laude, “Waveguiding inside the complete band gap of a phononic crystal slab,” Phys. Rev. E, 76, 056601 (2007). 17.J. O. Vasseur, P. A. Deymier, B. Djafari-Rouhani, Y. Pennec, and A. C. Hladky-Hennion, “Absolute forbidden bands and waveguiding in two-dimensional phononic crystal plates ,” Phys. Rev. B, 77, 085415, 2008. 18.M.S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, “Acoustic Band Structure of Periodic Elastic Composites,” Phys. Rev. Lett., 71, 2022, 1993. 19R. Sainidou, B. Djafari-Rouhani, and J. O. Vasseur, “Surface Acoustic Waves in Finite Slabs of Three-Dimensional Phononic Crystals”, Phys. Rev. B, 77, 094304. , 2008. 20.Yukihiro Tanaka and Shin-ichiro Tamura, “Surface Acoustic Waves in Two-Dimensional Periodic Elastic Structure.” Phys. Rev. B, 58, 7958, 1998. 21.F. Meseguer, M. Holgado, D. Caballero, N. Benaches, J. Sanchez-Dehesa, C. Lopez, and J. Llinares, “Rayleigh-Wave Attenuation by a Semi-Infinite Two-Dimensional Elastic-Band-Gap Crystal”, Phys. Rev. B, 59, 12169, 1999. 22.T.-T. Wu, Z.-G. Huang and S. Lin,” Surface and Bulk Acoustic Waves in Two-Dimensional Phononic Crystal Consisting of Materials with General Anisotropy”, Phys. Rev. B, 69, 094301, 2004. 23.J.-C. Hsu and T.-T. Wu, “Efficient Formulation for Band-Structure Calculations of Two-Dimensional Phononic-Crystal Plates,” Phys. Rev. B, 74, 144303, 2006. 24.A. Khelif, B. Aoubiza, S. Mohammadi, A. Adibi, and V. Laude, “Complete Band Gaps in Two-Dimensional Phononic Crystal Slabs,” Phys. Rev. E, 74, 046610 , 2006. 25.X. Zhang and Z. Liu, “Negative refraction of acoustic waves in two-dimensional phononic crystals,” Appl. Phys. Lett., 85, 341, 2004. 26.L. Feng, X.-P. Liu, M.-H. Lu, Y.-B. Chen, Y.-F. Chen, Y.-W. Mao, J. Zi, Y.-Y. Zhu, S.-N. Zhu, and N.-B. Ming, “Acoustic Backward-Wave Negative Refractions in the Second Band of a Sonic Crystal,” Phys. Rev. Lett., 96, 014301, 2006. 27.X. Zhang and Z. Liu, “Negative refraction of acoustic waves in two-dimensional phononic crystals,” Appl. Phys. Lett., 85, 341, 2004. 28.L. Feng, X. P. Liu, Y. B. Chen, Z. P. Huang, Y. W. Mao, Y. F. Chen, J. Zi, and Y. Y. Zhu, “Negative refraction of acoustic waves in two-dimensional sonic crystals,” Phys. Rev. B, 72, 033108, 2005. 29.L. Feng, X.-P. Liu, M.-H. Lu, Y.-B. Chen, Y.-F. Chen, Y.-W. Mao, J. Zi, Y.-Y. Zhu, S.-N. Zhu, and N.-B. Ming, “Acoustic Backward-Wave Negative Refractions in the Second Band of a Sonic Crystal,” Phys. Rev. Lett., 96, 014301, 2006. 30.M. Z. Ke, Z. Y. Liu, Z. G. Cheng, J. Li, P. Peng, and J. Shi, “Flat superlens by using negative refraction in two-dimensional phononic crystals,” Solid State Commun 142, 177, 2007. 31.P. A. Deymier, B. Merheb, J. O. Vasseur, A. Sukhovich, and J. H. Page., “Focusing of acoustic waves by flat lenses made from negatively refracting two-dimensional phononic crystals,” Rev. Mex. Fis. S, 54, 74, 2008. 32.Z. J. He, F. Y. Cai, Y. Q. Ding, and Z. Y. Liu, “Subwavelength imaging of acoustic waves by a canalization mechanism in a two-dimensional phononic crystal,” Appl. Phys. Lett., 93, 233503, 2008. 33.L. Y. Wu, L. W. Chen, and R. C. C. Wang, “Dispersion characteristics of negative refraction sonic crystals,” Physica B, 403, 3599, 2008. 34.A. Sukhovich, L. Jing, and J. H. Page, “Negative refraction and focusing of ultrasound in two-dimensional phononic crystals,” Phys. Rev. B, 77, 014301 , 2008. 35.M. Farhat, S. Guenneau, S. Enoch, A. B. Movchan, and G. G. Petursson, “Focussing bending waves via negative refraction in perforated thin plates,” Appl. Phys. Lett., 96, 081909, 2010. 36.J. Pierre, O. Boyko, L. Belliard, J. O. Vasseur, and B. Bonello, “Negative refraction of zero order flexural Lamb waves through a two-dimensional phononic crystal ,” Appl. Phys. Lett., 97, 121919, 2010. 37.S.-C. S. Lin, T. J. Huang, J.-H. Sun, and T.-T. Wu, “Gradient-index phononic crystals,” Phys. Rev. B, 79, 094302,2009. 38.S.-C. S. Lin, B. R. Tittmann, J.-H. Sun, T.-T. Wu, and T. J. Huang, “Acoustic beamwidth compressor using gradient-index phononic crystals,” J Phys D Appl Phys, 42, 185502, 2009. 39.T.-C. Wu, T.-T. Wu, and J.-C. Hsu, “Waveguiding and frequency selection of Lamb waves in a plate with a periodic stubbed surface,” Phys. Rev. B, 79, 104306 , 2009. 40.We use C11= 167.5 GPa, C12 = 63.9 GPa, C44 = 79.6 GPa and density=2332 kg/m3. 41.Structural Mechanics, COMSOL Multiphysics, Manual, Comsol, AB, Stockholm, Sweden. 42.We use C11= 503 GPa, C12 = 199 GPa, C44 = 152 GPa and density=19200 Kg/m3. 43.C. Gomez-Reino, M. V. Perez, and C. Bao, Gradient-index Optics: Fundamentals and Applications (2002). 44.C. K. Lee, G. Y. Wu, Thomas C. T. Teng, W. J. Wu, C. T. Lin, W. H. Hsiao, H. C. Shih, J. S. Wang, Sam S. C. Lin, Colin C. Lin, C. F. Lee, and Y. C. Lin, “A High Performance Doppler Interferometer for Advanced Optical Storage Systems, ” Jap. Journal of Appl. Phys., 38, Part 1, No. 3B, pp. 1730-1741, 1999.
|