跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/02/16 07:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃慧芬
研究生(外文):Hui-Fng Huang
論文名稱:溫室氣體效應評估模型之建立與分析
論文名稱(外文):The development and analysis of the GHGs effectsassessment model
指導教授:駱尚廉駱尚廉引用關係
口試委員:李公哲廖述良楊重信蔡慧敏
口試日期:2010-11-19
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:99
語文別:英文
論文頁數:127
中文關鍵詞:溫室氣體DPSIR模型溫室氣體排放因果鏈內生長模型
外文關鍵詞:Greenhouse EffectIndicatorCause-Effect ChainDriving Force-Pressure-State-Impact-ResponseEndogenous Growth ModelElasticity
相關次數:
  • 被引用被引用:3
  • 點閱點閱:527
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
溫室氣體(Greenhouse gases, GHGs)的排放及其衍生的議題,包含能源的使用、全球平均溫度改變、氣候變遷、生態脆弱度以及國家政策與國際公約的擬定,形成一複雜、環環相扣且可視為有動態關連性的國際環境保護與政治的議題;因此將溫室氣體排放-氣候變遷簡化為因果鏈 (chain of causality)來描述其可能的範疇 (UNFCCC, 2002; WRI, 2005)。因果鏈主要考量延滯性、非線性效應與回饋,及評估起始數據,因此若能選取適宜的指標於其間,對於政策的分析亦有影響。
然而芬蘭學者Hukkinen (2003)指出,如果因果關係鏈(cause-and-effect chains) 假設的基本理論與實際應用受質疑,則以該指標來評定活動行為與環境改變之間的差錯,很可能將是白費力氣;Hukkinen 認為訂出人類活動與環境間通用的指標於理論上不可行且實際應用上是有問題的,此外,資料的可及性成為國際間比較的重要關鍵。而資料的可及性與制度有關,因此永續評估與指標連結將受到很大的限制,顯然的,不同的議題將受制於我們需以個別(相對於通用而言)的鏡頭觀察,因此對於發展的注解可能是有條件的。
使用指標可以監測環境衝擊、評估政策與法規的效益、及提供長期的驗證資料,此外,亦能政策決定的有效工具與跨國比較;而所謂永續性指標,係將環境及自然資源的限制反映在經濟指標上,而以修正經濟活動為目的,反映不同開發方式對自然環境再生能力的影響;永續性指標不僅是現象描述,更是現在和未來現象的規範評量指標(Opschoor and Reijnders, 1991)。就資源的使用狀況而言,追求永續發展需滿足三個條件(Daly, 1990):1.再生資源的消費量不可超過其再生量、2.不可再生資源的消費量不可大於再生資源供給的增加量、3.排放污染量不考高於環境吸收能力。然而,上述三個條件在人類活動不斷的擴增下,愈來愈無法被滿足,特別是近年來過度的森林砍伐及化石燃料的使用,使得大氣層CO2 濃度節節高升,威脅人類生存空間,溫室氣體衍生的各類成為新世紀國際追求永續發展的重要課題。
目前國際間溫室氣體與能源相關之研究偏向CO2 排放量(包括總排放量、人均排放量….等)跨國比較;而根據京都議定書之內容目前亦重在盤點、清冊建立、研擬CO2 減量模式、政策措施管制模式等;而有關準則與指標建立方面,尚未跳脫上述格局;源於此,研究方向將朝向適合溫室氣體整合評量指標建立,而考量能源與CO2 排放具有緊密關聯性,因此亦將永續能源發展加入評估準則中,並與國際評量指標系統比較;此外,亦針對目前二氧化碳永續指標之計算係為單一值的結果,往往僅能針對量化指標(在壓力-狀態-回應(PSR)永續指標架構中係指生態環境狀態、社經壓力與制度回應指標)、卻無法解釋更重要的質化指標--亦稱廣域性指標(非專屬單一議題)意義等問題,以PSR 模型進行文獻回顧說明國際間使用的各項分類指標與變數間的意義、定義及角色與特性說明,作進一步研究討論,提出驅動力-壓力-狀態-衝擊-回應(DPSIR)模型之評量準則與指標。
審視台灣現階段與國際比較的指標,及台灣永續評量系統,可以明白有關溫室氣體減量評量指標,雖顧及資料可及性,即達到可與國際間比較目標,然而,卻因忽略了台灣能源結構與高能源進口比例(至2003 年為97%),使得台灣在全球的溫室氣體貢獻排名高居不下;而永續評量系統中,亦僅針對部門二氧化碳排放量(並以人均排放量為分析重點),無法明確的顯示台灣實際溫室氣體排放狀況;而長期忽略基礎研究的現況,亦使得在國際文獻中少有機會提出適合台灣狀況的準則/指標評量,與量化結果。本研究即根據上述模型,分析出台灣的相關指標趨勢來驗證模型的合理性。
環境污染往往來自於經濟活動,預測溫室氣體減量政策與排放量最適成長、經濟成長間的關係(如GDP, 所得, 能源價格),可利用內生長模型(endogenous growth model)多變數結構的特質,來模擬不同政策結果,如能源價格因國而異,能源相關支出的高低(如進口能源或開採能源)會影響能源的需求量,進而對於能源替代彈性有影響。本研究模擬排放量成長率與經濟成長率間的關連性,包括在執行環境保護支出行政命令的經濟體系的溫室氣體控制效率(efficiency)會比在自由競爭經濟體系為佳,而內生長模型中經濟成長與排放成長的根據各項參數模擬出溫室氣體排放彈性與溫室氣體控制支出彈性最適範圍。
本研究完成之成果有三:
1. 回顧國際間與溫室氣體議題相關之指標文獻及以PSR模型進行分類;建立DPSIR 溫室氣體效應與氣候變遷評量指標模型;並完成溫室氣體排放因果鏈(cause-effect chain of GHGs emission)與指標系統的結合。
2. 利用台灣永續評量系統的方法論,以台灣經驗為例,分析DPSIR溫室氣體效應與氣候變遷評量指標模型中指標趨勢,並驗證指標選用的合理性。
3. 以內生長模型分析,進一步瞭解不同的能源使用與政府政策對CO2 排放影響,及討論可用能源、技術比例、與其他生態環境因子等因素來探討未來發展永續與否。

The aggravated impacts of environment in particular release material emissions and energy by anthropogenic activities: for instance, anthropogenic emissions have been identified as a source of climate change being a serious issue.
The challenge of reducing the emission of greenhouse gases (GHGs) at local and global levels requires behavioral changes in life styles and energy consumption patterns in people, and the use of more energy efficient production, processing and distribution technologies. Own to the multi dimensions such as, economic development, the level of technology, supply/demand of energy, the structure of industry, complex international environment, political states are related to the issues of GHGs effects reducing and climate change.
In dealing with the complex issues of greenhouse gases (GHGs) emission and climate change mitigation, many interrelated factors such as cost, level of technology development, supply and demand of energy, structure of industry, and expenditures on research and development exist. Using indicators to monitor environmental impacts, evaluate the efficacies of policies, and regulations has been practiced for a long time; and it can serve as a useful tool for decision making and for comparison between different countries. Although numerous indicators have been developed for relevant subjects, integrated approaches that consider individual changes, dynamic interaction, and mutli-dimensions of indicators are scarce. This paper aimed to develop and analysis the GHGs indicators related climate change and sustainable energy assessment model.
Taiwan is a significant source of global GHGs emissions. A case study, using the developed framework and Taiwan’s actual data of the past two decades, was conducted. The results indicate that regulatory strategies for pollution control are inadequate in terms of ensuring environmental quality, and the nature does not have the capability to revert the impacts from the existing level of pollution. A DPSIR (Driving Force-Pressure-State-Impact-Response) framework under the cause-effect chain of GHGs emissions was used to assess the problems. This DPSIR model is mainly related to energy consumption, environmental impacts, and policy responses. Consider the optimal development between economic development and GHGs emissions control, an endogenous growth model to link energy use, relative energy price and GDP, and abatement technologies imposed by government for optimal emission control. Simulations were conducted to develop a structure’s relationship between energy consumption and emission reduction; while parameterization was made with the real data of Taiwan.
The objectives of the paper were: (1) conduct a literature review on the indicators that have been used in GHGs-related studies; (2) develop a DPSIR model that incorporates GHGs-related indicators and evaluate their relationships using a cause-effect chain of GHGs emission; and (3) develop a calculative method that can be used to explain the dynamic correlation among the inter-dependent indicators. The results reveal that: (1) an increase in governmental expenditure in environment pollution abatement will increase the efficiency of emission control, and its economic growth rate will be greater than that of the competitive economy in the long-time; (2) one should consider the elasticity of substitution in energy use will influence the energy demand diminishes as energy expenditure decrease; and (3) the range between elasticity of emission and the elasticity of expenditure for GHGs emission control can be a significant factor in an endogenous growth model. Using cleaner energy or optimizing energy structure could benefit both economic growth and emission control.

1 Introduction..........................................................................................................1
1.1 Background and Motivations....................................................................1
1.2 Problem Description and Research Objective.........................................2
1.3 Research Flow.............................................................................................7
2 Literature Review and Preliminary Thoughts ..................................................9
2.1 The global GHGs-related indicatos ............................................................11
2.1.1Internatonal Energy Agency................................................................11
2.1.2 European Environmental Agency ....................................................12
2.1.3 The Climate Analysis Tool (CAIT).....................................................13
2.1.4 The Organization for Economic Co-operation and Development
(OECD) .................................................................................................14
2.1.5Environmen tal Sustainabiliy Index ...................................................15
2.2 Classication of GHGs-related indicators....................................................18
2.2.1 The energy of GHGs-related indicators ............................................18
2.2.2 Climate change of GHGs-related indicators ...................................20
2.2.3 Vulnerability whining GHGs-related indicators ............................22
2.2.4 Technology of GHGs-related indicators ............................................23
2.3 The optimal growth model...........................................................................24
2.3.1Endogenous growth model .................................................................24
2.3.2 Scenario and assessment framework for controlling GHGs .........26
2.3.3 “Optimal “ for controlling GHGs ....................................................30
3 Research Design .................................................................................................31
3.1 Research Framework .................................................................................31
3.1.1 Development of a cause-effect chain of GHGs emissions ................31
3.1.2 Assumptions of Endogenous growth model for energy use and GHGs emission control ......................................................................34
3.2 Method of Calculation ...............................................................................36
3.2.1 Regression model validation...............................................................36
3.2.2 Calculation of a single index...............................................................37
3.2.3 Calculation of a composite/aggregate index ....................................38
3.2.4 Description of endogenous growth model .......................................40
4 Categorization of GHGs-related indicators by models ..................................49
4.1 GHGs-related indicators of PSR framework.............................................49
4.2 Indication of the greenhouse effect by using DPSIR framework ............52
4.3 Selection of indicators ..................................................................................54
5 Assessment of greenhouse effect by using a DPSIR model- A case study of a local region - Taiwan .......................................................................................58
5.1 Current status of GHGs emission, energy use in Taiwan.........................58
5.2 Relationship analysis of DPSIR model .......................................................64
5.3 Trends of Hunman activity..........................................................................66
5.4 Trends of Temperature change ...................................................................68
5.5 Trends of Environmental impact ................................................................70
5.6 Trends of Climate strategies........................................................................74
5.7 Trends of composite indices.........................................................................76
6 Parameterization of GHGs control and energy use by an endogenous
growth model ......................................................................................................78
6.1 Optimal Simulation: Trade-off between energy consumption and
emission reduction........................................................................................78
6.1.1 The relationship between the elasticity of energy efficiency and
GHGs emissions control ......................................................................81
6.1.2 Base simulation ....................................................................................82
6.1.3 Pt increase one unit: means the energy price rising or GDP
decrease.................................................................................................87
6.2 Elasticity of substitution depend on energy expenditure..........................92
7 Conclusion...........................................................................................................97
7.1 Preliminary Results......................................................................................97
7.2 Future Study ...............................................................................................99
A ppendix I EEA core set of indicators Overview, 2005................................ 101
Appendix II EU-funded ODYSSEE project ...................................................103
Appendix III Summary of CAIT Indicators .....................................................105
Appendix IV Comparison of different SD* indicator sets (Overview by OECD,
2002) ...............................................................................................107
Appendix V OECD set of key environmental indicators (OECD, 2007) ........109
Appendix VI Executive Summary Environmental Performance Index (EPI) Framework .................................................................................. 110
Appendix VII Executive Summary Environmental Sustainable Index (ESI) Framework ....................................................................................112
Appendix VIII The Climate Risk Index and The Climate Vulnerability Index 114
Appendix XI Definition of ATEAM’s Vulnerability model ...........................116
Appendix X Proof of endogenous growth model ............................................117
Reference.................................................................................................................119


Reference
Abdeen Mustafa Omer. Energy, environment and sustainable development. Renewable
and Sustainable Energy Reviews 2008; 12: 2265–2300.
Advanced Terrestrial Ecosystem Analysis and Modelling (ATEAM), 2004.
http://www.pik-potsdam.de/ateam
Aldy, J. E. (2006). Per capita carbon dioxide emissions convergence or divergence?
Environmental & Resource Economics, European Association of Environmental and
Resource Economists, 33(4), 533-555, 04.
Aldy, J. E. (2007). Divergence in state-level per capita carbon dioxide emissions Land
Economics. University of Wisconsin Press, 83(3), 353-369.
Altman D.G. (1991) Practical Statistics for Medical Research. Chapman & Hall,
London.
Anderson, K. P. (1972). Optimal Growth Ehwen the Stock of Resources Is Finite and
Depletable. Journal of Economic Theory, 4(2), 256-267.
Barro, R.J., Xavier Sala-I-Martin (1992). Public Finance in Model of Economic Growth.
Review of Economic Studies, 59, 645-661.
Barro, R. J. (1999). Ramsey Meets Laibson in the Neoclassical Growth Model. The
Quarterly Journal of Economics, November 1999.
Bereau of Energy, Ministry of Economic Affairs (MOEA), ROC (2007). The energy
situation in Taiwan.
http://web2.moeaboe.gov.tw/ecw/About/energy%20situation/main/en_01.html.
Bovenberg, L., Smulders, S.A. (1996). Transitional Impacts of Environmental Policy in
an Endogenous Growth Model. International Economic Review, 37 (4), 861-893.
Bruun H., Hukkinen, J., and Eklund, E. (2002). Scenarios for coping with contingency:
The case of aquaculture in the Finnish Archipelago Sea. Technological Forecasting
and Social Change, 69, 107-127.
Byrne, M.M. (1997). Is growth a dirty word? Pollution, abatement and endogenous
growth. Journal of Development Economics, 54, 261-284.
Cai J., Jiang Z.(2009) Energy consumption patterns by local residents in four nature
reserves in the subtropical broadleaved forest zone of China. Renewable and
Sustainable Energy Reviews 2009; doi:10.1016/j.rser.2009.08.017.
Campbell M.J. & Machin D. (1993) Medical Statistics a Commonsense Approach. 2nd
edn.Wiley, London.
Caroline Sullivan 2008. The Climate Vulnerability Index:relevance to the Tourism
Sector. Capacity Building Seminar Balliol College, University of Oxford,7 –11 April
2008. United Nations Environment Programme (UNEP); Oxford University Centre
for the Environment (OUCE) United Nations World Tourism Organization
(UNWTO) World Meteorological Organization (WMO)
120
Chen, J.H., Lai, C.C., Shieh, J.Y. (2003). Anticipated Environmental Policy and
Transitional Dynamics in an Endogenous Growth Model. Environmental and
Resource Economics, 25, 233-254.
Collados C.,. Duance T. P. (1999) Natural capital and quality of life: a model for
evaluating the sustainability of alternative regional development paths. Ecological
Economics 1999; 30: 441-460.
Council for Economic Planning and Development (CEPD), ROC (2003). Taiwan
statistical data book.
Daly H. E., 1991, Steady State Economics, 2nd Edition with New Essay, Washington
D.C., Covelo.
Den Butter, F.A.G.., Hofkes, M.W. (1995). Sustainable Development with Extractive
and Non-Extractive Use of the Environment in Production. Environmental and
Resource Economics, 6, 341-358.
den Elzen, M., Berk, M., Schaeffer, M., Olivier, J., Hendriks, C., and Metz ,B. (1999).
The Brazilian proposal and other options for international burden sharing: an
evaluation of methodological and policy aspects using the fair model, National
Institute of Public Health and the Environment, Bilthoven, The Netherlands.
Desgupta, P., Stiglitz, J.E. (1981). Resource Depletion under Technological Uncertainty.
Econometrica, 49(1), 85-104.
Dessaia S., Lu X., Risbey J. S.(2005) On the role of climate scenarios for adaptation
planning. Global Environmental Change 2005;15:87-97.
Dincer I., Rosen M.A.. Thermodynamic aspects of renewables and sustainable
development. Renewable and Sustainable Energy Reviews 2005; 9: 169-189.
European Environment Agency (EEA) (1999). Environmental indicators: Typology and
overview. Technical report no 25. European Environment Agency, Copenhagen.
Energy Information Administration (EIA) (2007), International Energy Outlook 2007,
DOE/EIA-0484, 2007 http://www.eia.doe.gov/oiaf/ieo/ 2007.
England, R.W. (2000). Natural capital and the theory of economic growth. Ecological
Economics, 34, 425-431.
Emilio Lebre La Rovere, Jeferson Borghetti Soares, Luciano Basto Oliveira, Tatiana
Lauria. Sustainable expansion of electricity sector: Sustainability indicators as an
instrument to support decision making. Renewable and Sustainable Energy Reviews
2010; 14: 422-429.
Esty, D.C., M.A. Levy et al. The 2005 Environmental Sustainability Index:
Benchmarking National Environmental Stewardship. New Haven: Yale Center for
Environmental Law and Policy 2005.
Esty, Daniel C., Marc Levy, Tanja Srebotnjak, Alexander de Sherbinin, Christine Kim,
and Bridget Anderson, Pilot 2006 Environmental Performance Index (EPI). New
121
Haven: Yale Center for Environmental Law and Policy 2006.
Esty, Daniel C., Marc Levy, Tanja Srebotnjak, Alexander de Sherbinin, Christine Kim,
and Bridget Anderson, Pilot 2010 Environmental Performance Index (EPI). New
Haven: Yale Center for Environmental Law and Policy 2010.
European Environment Agency (EEA) (1999). Environmental indicators: Typology and
overview. Technical report no 25. European Environment Agency, Copenhagen.
European Environment Agency (EEA) (2005)
http://www.eea.europa.eu/themes/climate/indicators 2009.
European Environment Agency (EEA) (2009)
http://www.eea.europa.eu/publications/technical_report_2005_1
EU-funded ODYSSEE project (2004) http://www.odyssee-indicators.org/ 2004.
Freeman S. L., Niefer M. J. and Roop J. M. (1997) Measuring industrial energy
intensity: practical issues and problems. Energy Policy 1997; 25: 703-714.
Frankhauser, S. (1993), The economic costs of global warming: some monetary
estimates, in Kaya, Y., N. Nakicenovic, W.D. Nordhaus and F.L. Toth (eds.), Costs
Impacts and Benefits of CO2 Mitigation. IASSA: Laxenberg.
Global Leaders for Tomorrow Environment Task Force (GLTETF)(2005) of World
Economic Forum, Yale Center for Environmental Law and Policy, Center for
International Earth Science Information Network (CIESIN) of Columbia University.
2005 Environmental Sustainability Index (ESI).
Golub, A., Markandya, A., and Marcellino, D. (2006). Does the Kyoto Protocol cost too
much and Create Unbreakable Barriers for Economic Growth? Contemporary
Economic Policy, 24(4), 520-535.
Goulder, L.H., Schneider S.H. (1999). Indeuced technological change and the
attractiveness of CO2 abatement policies. Resource and Energy Economics, 21,
211-253.
Gradus, R., & Smulders S. (1993). The trade-off between Environmental Care and
long-Term Growth: pollution in three prototype growth modela. Journal of
Economics, 58, 25-51.
Grob, G..(1990). Renewable, clean energies, urgency-solution-priorities. Proceeding of
1st World Renewable Energy Congress,Reading, UK, 13-27.
Haas R. (1997). Energy efficiency indicators in the residential sector. Energy Policy
1997; 25: 789-802.
Hass J. L., Brunvoll F., Hoie H.(2002) Overview of Sustainable Development Indicators
used by National and InternationaL Agencies. OECD, STD/DOC (2002)2 OECD
Statistics Working Paper 2003.
Harmeling, S.. Global climate risk index (CRI), Weather-related loss events and their
impacts on countries in 2006 and in a longterm comparison.
122
http://www.germanwatch.org/klima/cri2008.pdf 2008.
Huang, C.H., & Cai, D. (1994). Conatant-Returns Endogenous Growth with Pollution.
Environmental and Resource Economics, 4, 383-400.
Huang, C.H. (1997). Endogenous Damage Function of Water Pollution in Aquaculture:
The Case of Taiwan. Aquaculture Economics and Management.
International Energy Agency IEA/OECD (1999). Energy Balances of OECD Countries
Edition 1999.
IEA (2004). Oil crises and climate challenges: 30 Years of energy use in IEA countries.
Paris, France: International Energy Agency.
http://www.iiasa.ac.at/Research/ECS/IEW2004/docs/2004A_Unander.pdf
IEA (2005). 30 Key energy trends in the IEA & Worldwide.
http://www.iea.org/publications/free_new_Desc.asp?PUBS_ID=1542
IPCC (1995). Economic and Social Dimensions of Climate Change. Contribution of
Working Group III to the Second Assessment of the Intergovernmental Panel on
Climate Change. J.P.Bruce, H.Lee, E.F.Haites (Eds); Cambridge University Press,
UK.
IPCC (1997). Special Report on The Regional Impacts of Climate Change An
Assessment of Vulnerability, Robert T. Watson, Intergovernmental Panel on Climate
Change .
IPCC (2001a). Climate Change 2001: Mitigation. Contribution of working group III to
the third assessment report of the IPCC, B. Metz and O. Davidson (Eds). Cambridge:
Cambridge University Press, UK.
IPCC (2001b). Climate Change 2001: WG III: Mitigation. Cambridge: Cambridge
University Press.Available at http://www.grida.no/climate/ipcc_tar/wg3/index.htm
IPCC (2005). Report of the joint IPCC WG II & III expert meeting on the integration of
adaptation, mitigation and sustainable develoment into the 4th IPCC assessment
report 16-18 February 2005, Reunion Island.
IPCC (2007). IPCC Fourth Assessment Report: Working group II report : Impacts,
adaptation and vulnerability. Martin Parry, Osvaldo Canziani, Jean Palutik, Paul van
der Linden, Clair Hanson (Eds). http://www.ipcc.ch/ipccreports/ar4-wg2.htm
Jorgenson, D. and Wilcoxen, P. (1995). Reducing U.S.carbon emissions: An
econometric general equilibrium assessment. CA: Standard University Press.
Jouvet, P.A., Michel, P., Rotillon, G. (2005). Optimal growth with pollution: how to use
pollution permits?. Journal of Economics Dynamics & Control, 29, 1597-1609
Kaganovich, M. (1998). Sustained endogenous growth with decreasing returns and
heterogenous. Journal of Economic Dynamics and Control, 22, 575-1603.
Kavuncu, Y. O. and Knabb, S. D. (2005). Stabilizing greenhouse gas emissions:
assessing the intergenerational cost and benefits of the Kyoto Protocol. Energy
123
Economics, 27(3), 369-386.
Keeler, E., Spence, M., Zeckhauser, R. (1972). The optimal Control of Pollution.
Journal of Economic Theory, 4(1), 19-34.
La Rovere, E., Valente de Macedo, L., and Baumert, K. (2002). The Brazilian Proposal
on Relative Responsibility for Global Warming Building on the Kyoto Protocol:
Options for Protecting the Climate. Washington, DC: World Resources Institute.
Luers, A L, Lobella, DB, sklard, LS, Addamsa, CL, Matsona, PA. A method for
quantifying vulnerability, applied to the agricultural system of the Yaqui Valley,
Mexico. Global Environmental Change 2003; 13: 255-267.
MacGill, I., Outhred, H., Nolles, K. (2006). Some design lessons from market-based
greenhouse gas regulation in the restructured Australian electricity industry. Energy
Policy, 34, 11-25.
Metzger M. J., Leemans R.& Schröter D. (2004). A multidisciplinary multi-scale
framwork for assessing vulnerability to global change. Millennium Ecosystem
Assessment conference: Bridging Scales and Epistemologies - 17-20 March 2004,
Alexandria, Egypt. Session 6.2: Multi-Scale Assessments: Advances, Insights, and
Remaining Challenges.
http://www.millenniumassessment.org/documents/bridging/papers/metzger.marc.pdf
Nagata Y. (1997) The US/Japan comparison of energy intensity, Estimating the real gap.
Energy Policy 1997; 25(7-9): 683-699.
Nguyen Van, P. (2005). Distribution dynamics of CO2 emissions. Environmental and
Resource Economics, 32, 495-508.
Nordhaus, W. D. (1992). An optimal transition path for controlling greenhouse gases.
Science, 258, 1315-1319.
Nordhaus and Boyer (2000). Warming the world: economic models of global warming
(MIT Press, Cambridge, Mass).
Nordhaus, W. D. (2006). Life after Kyoto: Alternative mechanisms to control global
warming polices. prepared for the annual meetings of the American economic
association, Boston, Massachusetts, January 5-8, 2006. Retrieved 18-11-06,
http://nordhaus.econ.yale.edu/kyoto_long_2005.pdf.
Nordhaus, W. D. (2008). “A question of balance- weighing the options on global
warming policies” . Yale University Press New Haven & London.
http://www.econ.yale.edu/~nordhaus/homepage/Balance_2nd_proofs.pdf
OECD (1993). OECD core set of indicators for environmental performance reviews.
OECD Environment Monographs No.83. OECD. Paris.
OECD (2002). Overview of Sustainable Development Indicators used by National and
InternationaL Agencies. OECD, STD/DOC (2002)2 OECD Statistics Working
124
Paper 2003.
OECD (2007). Key environmental indicators. OECD Environment Directorat. OECD.
Paris.
Pablo del Rı’o Gonza’ leza, Fe’ lix Herna’ ndez (2007). How do energy &
environmental policy goals and instruments affect electricity demand? A framework
for the analysis. Renewable and Sustainable Energy Reviews 2007; 11: 2006–2031.
Phylipsen G. J. M., Blok K. and Worrell E. (1997). International comparisons of energy
efficiency-Methodologies for the manufacturing industry. Energy Policy 1997; 25:
715-725 .
Polsky C, Schröter D, Patt A, Gaffin S, Martello ML, Neff R, Pulsipher A, Selin H ,
2003. Assessing Vulnerabilities to the Effects of Global Change: An Eight-Step
Approach. Belfer Center for Science and International Affairs Working Paper,
Environment and Natural Resources Program, John F. Kennedy School of
Government, Harvard University, Cambridge, Massachusetts. 05:17
Rebelo, S (1991). Long-Run Policy Analysis and Long-Run Growth. Journal of Public
Economy 99, (3), 500-521.
Reis, A.B. (2001). Endogenous Growth and the Possibility of Eliminating Pollution.
Journal of Economics and Management, 42, 360-373.
Report of the Joint IPCC WG II & III Expert meeting on the integration of Adaptation,
Mitigation and Sustainable Development into the 4th IPCC Assessment Report. St
Denis, Reunion Island, France. Report Expert Meeting on AM-SD. February 16 – 18,
2005
Ridgley, M. A. (1996). Fair sharing of greenhouse gas burdens. Energy Policy, 24 (6),
517-529.
Romer, P.M. (1986). Increasing Returns and Long-Run Growth. The Journal of Political
Economy, 94 (5), 1002-1037.
Roubini, N., Setser, B. (2004). The effects of the recent oil price shock on the U.S. and
global economy.
Running, S. W., and Nemani, R. R. (1988). Relating seasonal patterns of the AVHRR
vegetation index to simulated photosynthesis and transpiration of forests in different
climates. Remote Sensing of Environment, 24,
347-367.http://pages.stern.nyu.edu/~nroubini/papers/OilShockRoubiniSetser.pdf.
Scheraga, J. D., Grmbsch, A. E. (1998). Risks, opportunities, and adaptation to climate
change. Climate Research 11, 85-95.
Schröter D, Acosta-Michlik L, Reidsma P, Metzger MJ and Klein RJT. (2003)
Modelling the Vulnerability of Eco-Social Systems to Global Change: Human
Adaptive Capacity to Changes in Ecosystem Service Provision. Paper presented at
the Fifth Open Meeting of the Human Dimensions of Global Environmental Change
125
Research Community, Montreal, Canada. Available online
http://sedac.ciesin.columbia.edu/openmtg/
Siddiqi, T. A. (2002). Natural gas reserves/total energy consumption: A useful new ratio
for addressing global climate change concerns. Energy Policy, 30, 1145-1149.
Sk Noim Uddin, Ros Taplina, Xiaojiang Yu (2007) Energy, environment and
development in Bhutan. Renewable and Sustainable Energy Reviews 2007; 11:
2083-2103.
Smekens, L., Bob van der Zwaan (2006). Atmospheric and geological CO2 damage
costs in energy scenarios. Environmental Science & Policy 9, 217-227.
Smulders, S. (1995). Entropy, Environment, and Endogenous Economic Growth.
International Tax and Public Finance, 2, 319-340.
Stern, N., 2006. Stern review on economics of climate change.
http://www.hm-treasury.gov.uk/independent_reviews/stern_review_economics_clim
ate_change_stern_eport.htm
Strazicich, M.C. and List, J.A. (2003). Are CO2 emission levels converging among
industrial countries? Environmental and Resource Economics, 24, 263-71.
Tahvonen, O., & Kuuluvainen, J.(1991). Optimal Growth with Renewable Resources
and Pollution. European Economic Review, 35 (2/3), 650-661.
The Climate Vulnerability Index (CVI). Identifying the vulnerability of communities to
changes in water resources
http://ocwr.ouce.ox.ac.uk/research/wmpg/cvi/cvi_leaflet.pdf 2008.
Tsai W.T., Hsien K.J. (2007). An analysis of cogeneration system utilized as sustainable
energy in the industrial sector in Taiwan. Renewable and Sustainable Energy
Reviews, 11, 2104-2120.
UNFCCC (1997). Paper no. 1: Brazil: Proposed Elements of a Protocol to the United
Nations Framework Convention on Climate Change. Presented by Brazil in
Response to the Berlin Mandate, UNFCCC/AGBM/1997/ MISC.1/Add.3 GE.97-,
Bonn. Available at: http://www.unfccc.int (and in Portuguese:
http://www.mct.gov.br/clima/).
UNFCCC (2006). FCCC/CP/2006/5/Add.1.Report of the Conference of the Parties on
its twelfth session, Part Two: Action taken by the Conference of the Parties at its
twelfth session. Nairobi 6 to 17 November 2006.
http://unfccc.int/resource/docs/2006/cop12/eng/05a01.pdf
(Decision -/CP.12 Further guidance to an entity entrusted with the operation of the
financial mechanism of the Convention, for the operation of the Special Climate
Change Fund. United Nations Climate Change Conference - Nairobi 2006, 6-17
November 2006, United Nations Office at Nairobi, Gigiri,
http://unfccc.int/files/meetings/cop_12/application/pdf/sbi_33.pdf)
126
UNFCCC (2008). The united nations climate change conference in Poznań, 1-12
December 2008. http://unfccc.int/meetings/cop_14/items/4481.php
United Nations (2005a). Energy Indicators for Sustainable Development: Guidelines
and Methodologies. International Atomic Energy Agency, United Nations
Department of Economic and Social Affairs, International Energy Agency, Eurostat
and European Environment Agency.
United Nations (2005 b),United Nations Millennium Development Goals 2000. New
York: United Nations.
U.S.EPA (1998). Guideline for reporting of daily air quality – Pollutant Standards Index
(PSI). U.S. Environmental Protection Agency Office of Air Quality Planning and
Standards Research Triangle Park, North Carolina 27711.
http://www.epa.gov/ttn/oarpg/t1/memoranda/rprtguid.pdf
Wang Q., Chen Y.(2010). Energy saving and emission reduction revolutionizing China’s
environmental protection. Renewable and Sustainable Energy Reviews 2010; 14:
535-539.
World Resources Institute (WRI) (2005). Carbon emissions from energy use and cement
manufacturing, 1850 to 2000.Available on-line through the climate analysis
indicators tool (CAIT). http://cait.wri.org. Washington, DC: World Resources
Institute.
World Resources Institute (WRI) (2009). Carbon emissions from energy use and cement
manufacturing, 1850 to 2000.Available on-line through the climate analysis
indicators tool (CAIT). http://cait.wri.org. Washington, DC: World Resources
Institute.
Worrell E., Price L., Martin N., Farla J. and Schaceffer R.(1997) Energy intensity in the
iron a nd steel industry: a comparison of physical and economic indicators. Energy
Policy 1997; 25: 727-744.
Yeh, J.R., Lo, S.L., Lee, L.L., Liu, J.T., Wang, C.S., and Huang, S.L. (2001).
Sustainable development indicators for Taiwan. Proc. of workshop on sustainable
development indicators, Chuang-Li, Taiwan.
Yip, C.K. (1996). A General Two-Sector Model of Endogenous Growth with Human
and Physical Capital: Balanced Growth and Transitional Dynamics. Journal of
Economic Theory, 68, 149-173.
Yohe, G., Richadr, S., Tol, J. (2002). Indicators for social and economic coping
capacity-moving toward a working definition of adaptive capacity. Global
Environmental Change, 12, 25-40.
Yohe, G. (2004). Some thoughts on perspective. Global Environmental Change, 14,
283-286.
Zachariadis T. (2005) Assessing policies towards sustainable transport in Europe: an
127
integrated model, Energy Policy 2005; 33:1509-1525 .

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top