跳到主要內容

臺灣博碩士論文加值系統

(44.200.171.156) 您好!臺灣時間:2023/03/22 02:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳琬瑜
研究生(外文):Wang-Yu Chen
論文名稱:探討小鼠肺臟上皮幹源細胞於脂多醣體刺激所產生之反應
論文名稱(外文):The study of LPS-induced response in mouse pulmonary stem/progenitor cells
指導教授:林泰元林泰元引用關係
口試委員:江伯倫林琬琬曹伯年黃彥華
口試日期:2011-07-18
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:藥理學研究所
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:66
中文關鍵詞:脂多醣體小鼠肺臟上皮幹源細胞
外文關鍵詞:LPSpulmonary stem/progenitor cells
相關次數:
  • 被引用被引用:0
  • 點閱點閱:204
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在過去,發現小鼠肺臟存在一群稀有的上皮幹源細胞,其表現胚胎幹細胞的細胞標記Oct-4、SSEA-1 以及 Sca-1與 Clara cell 的細胞標記 CCSP,以下簡稱mPSC (mouse pulmonary stem/progenitor cell)。本篇利用初級肺部組織細胞培養方法將 mPSC篩選出來。在細胞培養過程中,mPSC會形成colony 的形狀且其生長與幹性(stemness)的維持需要仰賴周圍的間質細胞(stromal cells),一旦將mPSC 自細胞培養中分離出來至新的有第一型collagen覆蓋的培養皿中,將分化成第二型的肺泡細胞(type -2 pneumocytes),之後繼續分化成第一型的肺泡細胞(type -1 pneumocytes)。成體幹細胞分佈於各種組織器官,在外來的損傷下能負責維持及修護特定組織之完整性。然而,我們對mPSC在外來的損傷刺激下所扮演的角色和機制仍不明,因此我們利用LPS刺激mPSC的模式,探討mPSC在損傷後所扮演的角色及其引發的機制。LPS全名為lipopolysaccharide,為革蘭氏陰性菌細胞壁外膜的成分之一,其常被拿來當作誘發肺部損傷或發炎的刺激物。由結果顯示,在LPS刺激mPSC之下, mPSC相較於周圍的stromal cells更具敏感性。首先,我們利用螢光免疫染色的方法發現mPSC 中的緊密接合蛋白,克奇沙病毒-腺病毒受體(CAR),其表現有顯著的下降。另外,在LPS刺激後也發現趨化因子,MCP1 和 MIP1-α有明顯攀升的趨勢。而這兩個趨化因子屬於CC family的成員,主要功能為趨化單核球或巨噬細胞。另一方面,我們也發現到LPS對mPSC的刺激可能是透過其主要受體TLR4所引發。而在聚合酶連鎖反應分析下,發現到TLR4的表現有上升。於是,更進一步探究其下游所引發的訊息傳遞路徑,從西方點墨法顯示其活化路徑可能為ERK-MAPK 或NF-κB。另外,在mPSC與巨噬細胞的互動過程中,我們也更進一步地去分析巨噬細胞的分化情形。綜合以上的結果,我們認為在LPS刺激mPSC傷害模式下,mPSC可能具重要的免疫調節角色,且透過旁分泌效應來影響巨噬細胞。

In previous study, a rare population of lung epithelial stem/progenitor cells in mouse which expressed specific markers (Oct-4/SSEA-1/Sca-1/Clara cells secretion protein, CCSP), were identified and named mPSC. The cells could be enriched by a primary cells selection culture method. In the culture, mPSC could maintain in undifferentiated stage for weeks; and formed individual colonies with surrounding stroma cells. When the colonies of mPSC were plucked away from the cultures without stroma cells, and transferred to a new type-I collagen-coated culture dishes, the transferred cells were differentiated into type-2 and then type-1 pneumocytes in a sequential fashion. It is well known that tissue specific stem/progenitor cells play a role in repair and regeneration after tissue injury. However, the injury responses for the mPSCs were unclear. In this study, the primary culture was stimulated with LPS in order to reveal the injury mechanism and response for mPSCs. LPS is an outer membrane component of Gram-negative bacteria and often used as an inducer of lung injury. The results showed that mPSCs were more sensitive to LPS treatment comparing to stromal cell in the culture. In immunofluoresence staining analysis, LPS treatment down-regulated the expression of Coxsackievirus-adenovirus receptor (CAR), which is a tight junction protein of mPSCs. Additionally, the expression of chemokines, such as MCP1 and MIP1-α, was highly expressed after treatment. These CC chemokines are suggested to be associated with the interaction of macrophages. The results in this study also indicated that the stimulus of LPS for mPSCs was via toll-like receptor 4 (TLR4), the main receptor of LPS. The expression of TLR4 and its associated complex in mPSCs were analyzed by RT-PCR and Immunofluorescence staining respectively. Furthermore, the downstream signaling of TLR4, including NF-κB and MAPK pathways, were also examined by western blot. The results showed that TLR4 expression was up-regulated upon LPS stimulation and the LPS- induced injury pathway might be via the ERK-MAPK or NF-κB signaling pathway. In addition, we further show the polarization of macrophage in response to stimulation with various conditioned medium from mPSCs. Taken all together, we suggest that mPSCs may play a crucial role in regulating innate immune system upon LPS stimulation and exert paracrine effects to interact with macrophages.



Contents
Abbreviation I
中文摘要 II
Abstract III
Chapter 1. Introduction 1
1.1.Stem/progenitor cells 2
1.1.1. Stem/progenitor cells in the lung 2
1.1.2. Oct4+ pulmonary stem/progenitor cell in our culture system 3
1.2.Innate immune response in the lung 4
1.2.1. The role of macrophage in immune respons 4
1.2.2. Recognition of pathogens by airway epithelial cells 5
1.2.3. Toll-like receptors mediate pattern recognition signaling 6
1.2.4. Cytokines and Chemokines in inflammation 7
1.3.LPS-induced lung injury 9
1.4.LPS/TLR4 signaling pathway 10
1.5.Motivation 11
1.6.Aim 12
Chapter 2. Meterials and Methods 13
2.1.Cell culture 14
2.2.Cells stimulation with LPS 16
2.3.RNA extraction 16
2.4.Reverse transcription-polymerase chain reaction (RT-PCR)17
2.5.Immunofluorescence staining 17
2.6.Western blot 18
2.7.Migration assay 19
2.8.Cell viability assay 19
2.9.Propidium iodide (PI) staining 20
2.10.Statistics 20
Chapter 3. Results 21
3.1.The morphology of primary mPSC was changed after LPS stimulation 22
3.2.Cytotoxic effects of lung primary culture after LPS stimulation 22
3.3.The tight junction protein of primary mPSC was dissembling after LPS stimulation 23
3.4.Chemokine expression of primary mPSC after LPS stimulation 24
3.5.TLR4 receptor complex expression of primary mPSCs 26
3.6.LPS-induced activation of signaling pathways of primary mPSCs 27
3.7.The interaction between RAW 264.7 and mPSC in response to LPS 29
3.8.Modulation of macrophage polarization in response to different conditioned medium of mPSC 30
Chapter 4. Discussion 32
4.1.The signaling pathway of mPSC activated by LPS 33
4.2.Chemokine production of mPSC induced by LPS 34
4.3.The interaction between macrophage and mPSC via paracrine effect 35
4.4.The polarization of macrophages 36
Chapter 5. Conclusion 38
Figures and Tables 41
References 61


Akira, S., Uematsu, S., and Takeuchi, O. (2006). Pathogen recognition and innate immunity. Cell 124, 783-801.
Arndt, P.G., Suzuki, N., Avdi, N.J., Malcolm, K.C., and Worthen, G.S. (2004). Lipopolysaccharide-induced c-Jun NH2-terminal kinase activation in human neutrophils: role of phosphatidylinositol 3-Kinase and Syk-mediated pathways. J Biol Chem 279, 10883-10891.
Baggiolini, M., Dewald, B., and Moser, B. (1994). Interleukin-8 and related chemotactic cytokines--CXC and CC chemokines. Adv Immunol 55, 97-179.
Beutler, B., and Rietschel, E.T. (2003). Innate immune sensing and its roots: the story of endotoxin. Nat Rev Immunol 3, 169-176.
Blenkinsopp, W.K. (1967). Proliferation of respiratory tract epithelium in the rat. Exp Cell Res 46, 144-154.
Boman, H.G. (2000). Innate immunity and the normal microflora. Immunol Rev 173, 5-16.
Brandolini, L., Asti, C., Ruggieri, V., Intilangelo, A., Pellegrini, L., Chiusaroli, R., Caselli, G.F., and Bertini, R. (2000). Lipopolysaccharide-induced lung injury in mice. II. Evaluation of functional damage in isolated parenchyma strips. Pulm Pharmacol Ther 13, 71-78.
Cario, E., Brown, D., McKee, M., Lynch-Devaney, K., Gerken, G., and Podolsky, D.K. (2002). Commensal-associated molecular patterns induce selective toll-like receptor-trafficking from apical membrane to cytoplasmic compartments in polarized intestinal epithelium. Am J Pathol 160, 165-173.
Cario, E., Rosenberg, I.M., Brandwein, S.L., Beck, P.L., Reinecker, H.C., and Podolsky, D.K. (2000). Lipopolysaccharide activates distinct signaling pathways in intestinal epithelial cell lines expressing Toll-like receptors. J Immunol 164, 966-972.
Chen, X., Armstrong, M.A., and Li, G. (2006). Mesenchymal stem cells in immunoregulation. Immunol Cell Biol 84, 413-421.
Chung, Y.J., Jarvis, B., and Pestka, J. (2003). Modulation of lipopolysaccharide-induced proinflammatory cytokine production by satratoxins and other macrocyclic trichothecenes in the murine macrophage. J Toxicol Environ Health A 66, 379-391.
Cohen, C.J., Shieh, J.T., Pickles, R.J., Okegawa, T., Hsieh, J.T., and Bergelson, J.M. (2001). The coxsackievirus and adenovirus receptor is a transmembrane component of the tight junction. Proc Natl Acad Sci U S A 98, 15191-15196.
Diks, S.H., Richel, D.J., and Peppelenbosch, M.P. (2004). LPS signal transduction: the picture is becoming more complex. Curr Top Med Chem 4, 1115-1126.
Eutamene, H., Theodorou, V., Schmidlin, F., Tondereau, V., Garcia-Villar, R., Salvador-Cartier, C., Chovet, M., Bertrand, C., and Bueno, L. (2005). LPS-induced lung inflammation is linked to increased epithelial permeability: role of MLCK. Eur Respir J 25, 789-796.
Ford, M.L., Onami, T.M., Sperling, A.I., Ahmed, R., and Evavold, B.D. (2003). CD43 modulates severity and onset of experimental autoimmune encephalomyelitis. J Immunol 171, 6527-6533.
Giangreco, A., Reynolds, S.D., and Stripp, B.R. (2002). Terminal bronchioles harbor a unique airway stem cell population that localizes to the bronchoalveolar duct junction. Am J Pathol 161, 173-182.
Herridge, M.S., Cheung, A.M., Tansey, C.M., Matte-Martyn, A., Diaz-Granados, N., Al-Saidi, F., Cooper, A.B., Guest, C.B., Mazer, C.D., Mehta, S., et al. (2003). One-year outcomes in survivors of the acute respiratory distress syndrome. N Engl J Med 348, 683-693.
Hong, K.U., Reynolds, S.D., Giangreco, A., Hurley, C.M., and Stripp, B.R. (2001). Clara cell secretory protein-expressing cells of the airway neuroepithelial body microenvironment include a label-retaining subset and are critical for epithelial renewal after progenitor cell depletion. Am J Respir Cell Mol Biol 24, 671-681.
Hong, K.U., Reynolds, S.D., Watkins, S., Fuchs, E., and Stripp, B.R. (2004). In vivo differentiation potential of tracheal basal cells: evidence for multipotent and unipotent subpopulations. Am J Physiol Lung Cell Mol Physiol 286, L643-649.
Ingalls, R.R., Heine, H., Lien, E., Yoshimura, A., and Golenbock, D. (1999). Lipopolysaccharide recognition, CD14, and lipopolysaccharide receptors. Infect Dis Clin North Am 13, 341-353, vii.
Jacobs, Y., Xin, X.Q., Dorshkind, K., and Nelson, C. (1994). Pan/E2A expression precedes immunoglobulin heavy-chain expression during B lymphopoiesis in nontransformed cells, and Pan/E2A proteins are not detected in myeloid cells. Mol Cell Biol 14, 4087-4096.
Kagan, J.C., and Medzhitov, R. (2006). Phosphoinositide-mediated adaptor recruitment controls Toll-like receptor signaling. Cell 125, 943-955.
Kanzler, H., Barrat, F.J., Hessel, E.M., and Coffman, R.L. (2007). Therapeutic targeting of innate immunity with Toll-like receptor agonists and antagonists. Nat Med 13, 552-559.
Kim, C.F., Jackson, E.L., Woolfenden, A.E., Lawrence, S., Babar, I., Vogel, S., Crowley, D., Bronson, R.T., and Jacks, T. (2005). Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 121, 823-835.
Kopp, E., and Medzhitov, R. (2003). Recognition of microbial infection by Toll-like receptors. Curr Opin Immunol 15, 396-401.
Lee, J.H., Choi, Y.H., Kang, H.S., and Choi, B.T. (2004). An aqueous extract of Platycodi radix inhibits LPS-induced NF-kappaB nuclear translocation in human cultured airway epithelial cells. Int J Mol Med 13, 843-847.
Li, X.Y., Donaldson, K., and MacNee, W. (1998). Lipopolysaccharide-induced alveolar epithelial permeability: the role of nitric oxide. Am J Respir Crit Care Med 157, 1027-1033.
Ling, T.Y., Kuo, M.D., Li, C.L., Yu, A.L., Huang, Y.H., Wu, T.J., Lin, Y.C., Chen, S.H., and Yu, J. (2006). Identification of pulmonary Oct-4+ stem/progenitor cells and demonstration of their susceptibility to SARS coronavirus (SARS-CoV) infection in vitro. Proc Natl Acad Sci U S A 103, 9530-9535.
Lu, Y.C., Yeh, W.C., and Ohashi, P.S. (2008). LPS/TLR4 signal transduction pathway. Cytokine 42, 145-151.
Lukacs, N.W., Oliveira, S.H., and Hogaboam, C.M. (1999). Chemokines and asthma: redundancy of function or a coordinated effort? J Clin Invest 104, 995-999.
Martin, T.R. (2000). Recognition of bacterial endotoxin in the lungs. Am J Respir Cell Mol Biol 23, 128-132.
Medzhitov, R., and Janeway, C.A., Jr. (1997). Innate immunity: impact on the adaptive immune response. Curr Opin Immunol 9, 4-9.
Miller, S.I., Ernst, R.K., and Bader, M.W. (2005). LPS, TLR4 and infectious disease diversity. Nat Rev Microbiol 3, 36-46.
Moser, B., Wolf, M., Walz, A., and Loetscher, P. (2004). Chemokines: multiple levels of leukocyte migration control. Trends Immunol 25, 75-84.
Mosser, D.M., and Edwards, J.P. (2008). Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8, 958-969.
Nakamura, H., Yoshimura, K., Jaffe, H.A., and Crystal, R.G. (1991). Interleukin-8 gene expression in human bronchial epithelial cells. J Biol Chem 266, 19611-19617.
Noulin, N., Quesniaux, V.F., Schnyder-Candrian, S., Schnyder, B., Maillet, I., Robert, T., Vargaftig, B.B., Ryffel, B., and Couillin, I. (2005). Both hemopoietic and resident cells are required for MyD88-dependent pulmonary inflammatory response to inhaled endotoxin. J Immunol 175, 6861-6869.
O''Neill, L.A. (2006). Targeting signal transduction as a strategy to treat inflammatory diseases. Nat Rev Drug Discov 5, 549-563.
Oppenheim, J.J., Zachariae, C.O., Mukaida, N., and Matsushima, K. (1991). Properties of the novel proinflammatory supergene "intercrine" cytokine family. Annu Rev Immunol 9, 617-648.
Paine, R., 3rd, Rolfe, M.W., Standiford, T.J., Burdick, M.D., Rollins, B.J., and Strieter, R.M. (1993). MCP-1 expression by rat type II alveolar epithelial cells in primary culture. J Immunol 150, 4561-4570.
Pingle, S.C., Sanchez, J.F., Hallam, D.M., Williamson, A.L., Maggirwar, S.B., and Ramkumar, V. (2003). Hypertonicity inhibits lipopolysaccharide-induced nitric oxide synthase expression in smooth muscle cells by inhibiting nuclear factor kappaB. Mol Pharmacol 63, 1238-1247.
Polito, A.J., and Proud, D. (1998). Epithelia cells as regulators of airway inflammation. J Allergy Clin Immunol 102, 714-718.
Poynter, M.E., Irvin, C.G., and Janssen-Heininger, Y.M. (2003). A prominent role for airway epithelial NF-kappa B activation in lipopolysaccharide-induced airway inflammation. J Immunol 170, 6257-6265.
Pugin, J., Schurer-Maly, C.C., Leturcq, D., Moriarty, A., Ulevitch, R.J., and Tobias, P.S. (1993). Lipopolysaccharide activation of human endothelial and epithelial cells is mediated by lipopolysaccharide-binding protein and soluble CD14. Proc Natl Acad Sci U S A 90, 2744-2748.
Rawlins, E.L. (2008). Lung epithelial progenitor cells: lessons from development. Proc Am Thorac Soc 5, 675-681.
Rawlins, E.L., and Hogan, B.L. (2006). Epithelial stem cells of the lung: privileged few or opportunities for many? Development 133, 2455-2465.
Reddy, R., Buckley, S., Doerken, M., Barsky, L., Weinberg, K., Anderson, K.D., Warburton, D., and Driscoll, B. (2004). Isolation of a putative progenitor subpopulation of alveolar epithelial type 2 cells. Am J Physiol Lung Cell Mol Physiol 286, L658-667.
Rock, J.R., Onaitis, M.W., Rawlins, E.L., Lu, Y., Clark, C.P., Xue, Y., Randell, S.H., and Hogan, B.L. (2009). Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc Natl Acad Sci U S A 106, 12771-12775.
Roos-Engstrand, E., Wallin, A., Bucht, A., Pourazar, J., Sandstrom, T., and Blomberg, A. (2005). Increased expression of p38 MAPK in human bronchial epithelium after lipopolysaccharide exposure. Eur Respir J 25, 797-803.
Schall, T.J., and Bacon, K.B. (1994). Chemokines, leukocyte trafficking, and inflammation. Curr Opin Immunol 6, 865-873.
Schulz, C., Farkas, L., Wolf, K., Kratzel, K., Eissner, G., and Pfeifer, M. (2002). Differences in LPS-induced activation of bronchial epithelial cells (BEAS-2B) and type II-like pneumocytes (A-549). Scand J Immunol 56, 294-302.
Schwartz, D.A., Thorne, P.S., Yagla, S.J., Burmeister, L.F., Olenchock, S.A., Watt, J.L., and Quinn, T.J. (1995). The role of endotoxin in grain dust-induced lung disease. Am J Respir Crit Care Med 152, 603-608.
Skerrett, S.J., Liggitt, H.D., Hajjar, A.M., Ernst, R.K., Miller, S.I., and Wilson, C.B. (2004). Respiratory epithelial cells regulate lung inflammation in response to inhaled endotoxin. Am J Physiol Lung Cell Mol Physiol 287, L143-152.
Standiford, T.J., Kunkel, S.L., Lukacs, N.W., Greenberger, M.J., Danforth, J.M., Kunkel, R.G., and Strieter, R.M. (1995). Macrophage inflammatory protein-1 alpha mediates lung leukocyte recruitment, lung capillary leak, and early mortality in murine endotoxemia. J Immunol 155, 1515-1524.
Sueblinvong, V., and Weiss, D.J. (2010). Stem cells and cell therapy approaches in lung biology and diseases. Transl Res 156, 188-205.
Takeda, K., and Akira, S. (2004). TLR signaling pathways. Semin Immunol 16, 3-9.
Takeda, K., and Akira, S. (2005). Toll-like receptors in innate immunity. Int Immunol 17, 1-14.
Takeuchi, O., Hoshino, K., Kawai, T., Sanjo, H., Takada, H., Ogawa, T., Takeda, K., and Akira, S. (1999). Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 11, 443-451.
Uehara, A., Sugawara, S., Tamai, R., and Takada, H. (2001). Contrasting responses of human gingival and colonic epithelial cells to lipopolysaccharides, lipoteichoic acids and peptidoglycans in the presence of soluble CD14. Med Microbiol Immunol 189, 185-192.
Vernooy, J.H., Dentener, M.A., van Suylen, R.J., Buurman, W.A., and Wouters, E.F. (2001). Intratracheal instillation of lipopolysaccharide in mice induces apoptosis in bronchial epithelial cells: no role for tumor necrosis factor-alpha and infiltrating neutrophils. Am J Respir Cell Mol Biol 24, 569-576.
Visintin, A., Latz, E., Monks, B.G., Espevik, T., and Golenbock, D.T. (2003). Lysines 128 and 132 enable lipopolysaccharide binding to MD-2, leading to Toll-like receptor-4 aggregation and signal transduction. J Biol Chem 278, 48313-48320.
Wolfs, T.G., Buurman, W.A., van Schadewijk, A., de Vries, B., Daemen, M.A., Hiemstra, P.S., and van ''t Veer, C. (2002). In vivo expression of Toll-like receptor 2 and 4 by renal epithelial cells: IFN-gamma and TNF-alpha mediated up-regulation during inflammation. J Immunol 168, 1286-1293.
Yamamoto, M., Sato, S., Hemmi, H., Uematsu, S., Hoshino, K., Kaisho, T., Takeuchi, O., Takeda, K., and Akira, S. (2003). TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway. Nat Immunol 4, 1144-1150.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top