跳到主要內容

臺灣博碩士論文加值系統

(44.220.251.236) 您好!臺灣時間:2024/10/04 10:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:曾祐強
研究生(外文):Yu-chiang Tseng
論文名稱:磷酸鋰鐵電池發展趨勢—學術論文之主路徑分析
論文名稱(外文):A Study of The Technology Development trend of Lithium Iron Phosphate Batteries:Main Path of Academic Articles
指導教授:劉顯仲劉顯仲引用關係
口試委員:劉顯仲
口試日期:2010-05-20
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:科技管理所
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:91
中文關鍵詞:磷酸鋰鐵成長曲線主路徑分析h-index發展趨勢
外文關鍵詞:LiFePO4Li ion batteriesS curvemain path analysish-index
相關次數:
  • 被引用被引用:14
  • 點閱點閱:688
  • 評分評分:
  • 下載下載:141
  • 收藏至我的研究室書目清單書目收藏:2
電動車兼具環保與節能省碳概念,獲得世界各國青睞並推廣。在眾多電池技術中,磷酸鋰鐵(LiFePO4)電池具備安全性高、放電穩定與價格相對便宜等優點,可望成為電動車電池主流技術。本研究欲透過學術論文找出磷酸鋰鐵的發展脈絡,協助欲進入該產業的企業或個人掌握研究動向、建立優勢。
本研究使用Web of Science資料庫檢索磷酸鋰鐵領域的學術論文,並依據論文間的引證關係,透過主路徑分析計算論文間引證連結的強度,發掘對後續研究有很大貢獻的論文,將它們依引用關係繪製成主要發展路徑圖,用以說明研究領域中主要思想的演變歷程,藉此可瞭解時下熱門研究主題與未來可能動向。此外,本研究也使用h-index找出技術領域中最具引響力的學者與期刊,並由論文的成長曲線推測技術所處的成長階段。
本研究發現,磷酸鋰鐵位於成長曲線的中後期,如何商品化為產業目前面臨的問題;透過主路徑分析瞭解磷酸鋰鐵的合成技術、鋰離子在兩相間的脫嵌與嵌入模式,以及改善磷酸鋰鐵材料克電容量表現的方法等為近十年來主要的研究課題。未來將朝向高性能的磷酸鋰鐵電池發展,維持高電容量、同時提升能量密度,因此合成技術的改善、導電碳結構的設計、磷酸鋰鐵的粒徑大小與形態,為不可或缺的熱門研究題材。本研究亦顯示主路徑分析可有效率找出對目標研究領域有重要影響力的學術論文,透過視覺化的呈現有助於使用者瞭解技術發展全貌。
In order to reduce CO2 emission and avoid the greenhouse effect, a lot of countries, including U.S., Japan, China, have already carried out development policy to promote green vehicles. For the upcoming era of electric vehicles, this paper would focus on the research trend of LiFePO4, a type of battery technology for EVs, and use visual tool to show the flow of knowledge mainstreams. Through this study, one can obtain basic domain knowledge of LiFePO4 battery, and capture the main development trajectory in the short times.
Citation network in academic articles have been developed. This paper use main path analysis and h-index to find out the influential articles and authors in the field of LiFePO4. We found three active knowledge mainstreams in recent ten years. They are synthesis of LiFePO4 particles, Lithium extraction/insertion process in LiFePO4, and Improvement of LiFePO4 electrochemical performance, such as enhancing electronic conductivity or Li ion diffusion to reach high electric capacity.
Through growth curve analysis with academic articles, we found LiFePO4 is on the growing stage, and it’s time to commercialize. In the future, development of high performance battery is expected. Use innovative design of carbon conductive network via proper synthesis process to invent LiFePO4 battery, which with both high electric capacity and high energy density, would be the research trend in academic field. In this paper we show that main path analysis is a proper methodology for finding influence articles and authors in the field of technology research.
目錄
第壹章 緒論…………………………………………………………………………………1
一、研究背景與動機…………………………………………………………… 1
二、研究目的………………………………………………………………………… 4
第貳章 文獻探討…………………………………………………………………………5
一、知識領域視覺化…………………………………………………………… 5
二、引文分析………………………………………………………………………… 6
三、主路徑分析…………………………………………………………………… 7
四、g-index與h-index………………………………………………… 14
五、成長曲線………………………………………………………………………… 14
六、磷酸鋰鐵電池…………………………………………………………………18
(一)鋰離子脫嵌/嵌入機制……………………………………… 19
(二)提升磷酸鋰鐵的導電性………………………………………20
1. 化學取代…………………………………………………………………21
2. 金屬摻雜……………………………………………………………… 21
3. 塗佈導電材料……………………………………………………… 21
(三)磷酸鋰鐵的合成方法………………………………………… 23
1. 固相法(Solid-State reacion)…………23
2. 溶膠-凝膠法(Sol-Gel)………………………………23
3. 共沉澱法(Coprecipitated)………………… 24
4. 水熱法(Hydrothermal synthesis)…24
5. 噴霧裂解法(Spray-pyrolysis)…………24
第参章 研究方法…………………………………………………. 26
一、研究架構……………………………………………………. 26
(一)資料來源………………………………………………. 27
(二)資料蒐集與關鍵字檢索………………………………. 27
(三)期刊與作者基本統計…………………………………. 31
(四)成長曲線分析與Loglet Lab…………………………31
(五)主路徑分析與Pajek………………………………… 31
第肆章 研究結果…………………………………………………. 33
一、期刊與作者基本統計………………………………………. 33
(一)期刊統計………………………………………………. 33
(二)作者統計………………………………………………. 33
二、磷酸鋰鐵學術論文成長曲線分析…………………………. 38
三、磷酸鋰鐵學術論文主路徑分析…………………………… 39
(一)傳統主路徑……………………………………………. 40
(二)整體觀點的主路徑……………………………………. 48
(三)發展結構觀點的主路徑……………………………… 56
(四) 磷酸鋰鐵近年發展…………………………………... 59
第伍章 研究結論…………………………………………………. 66
一、磷酸鋰鐵學術研究論文發展趨勢軌跡總結………………66
二、研究發現………………………………………………………… 68
三、研究貢獻………………………………………………………. 69
參考文獻………………………...………………………………… ……………………71
[1] 陳光華、陳雅琦,學術期刊引用文獻資料庫之現況與建置,大學圖書館,2001,5卷1期,p34-48
[2] 林建山,商情預測-技術與實務,環球經濟社,1987,台北
[3] Abouimrane A., Armand M., Ravet N., Carbon Nano-Painting: Application to non-Phosphate Oxyanions, e.g. Borates, Electrochemical Society, 2003, V20, p15-22
[4] Andersson A. S., Kalska B., Haggstrom L., Thomas J. O., Lithium extraction/insertion in LiFePO4: an X-ray diffraction and Mossbauer spectroscopy study, Solid State Ionics, 2000, V130, p41-52
[5] Andersson A. S., Thomas J. O., Kalska B., Haggstrom L., Thermal stability of LiFePO4-based cathodes, Electrochemical and Solid State Letters, 2000, V3, Issue 2, p66-68
[6] Awarke A., Lauer S., Pischinger S., Wittler M., Percolation-tunneling modeling for the study of the electric conductivity in LiFePO4 based Li-ion battery cathodes, Journal of Power Sources, 2011, V196, Issue 1, p405-411
[7] Axmann P., Stinner C., Wohlfahrt M. M., Mauger A., Gendron F., Julien C. M., Nonstoichiometric LiFePO4: Defects and Related Properties, Chemistry of Materials, 2009, V21, Issue 8, p1636-1644
[8] Bewlay S. L., Konstantinov K., Wang G. X., Dou S. X., Liu H. K., Conductivity improvements to spray-produced LiFePO4 by addition of a carbon source, Materials Letters, 2004, V58, Issue 11, p1788-1791
[9] Borner K., Chaomei C., Boyack K. W., Visualizing knowledge domains, Annual review of information science and technology, 2003, V37 , p179-255
[10] Bornmann L, Daniel H. D., Does the h-index for ranking of scientists really work?, Scientometrics, 2005, V65, p391-392
[11] Brooks T. A., Evidence of complex citer motivations, Journal of the American Society for Information Science, 1986, V36, p34-36
[12] Carley, K. M., Hummon, N. P., Harty M., Scientific influence: An analysis of the main-path structure in the Journal of Conflict Resolution, Science Communication, 1993,V14, p417-447
[13] Ceder G., Kang B., Response to "unsupported claims of ultrafast charging of Li-ion batteries", Journal of Power Sources, 2009, V194, Issue 2, p1024-1028
[14] Chaomei C., Domain visualization for digital libraries, IEEE International Conference, 2000
[15] Chang Z. R., Lv H. J., Tang H. W., Li H. J., Yuan X. Z., Wang H. J., Synthesis and characterization of high-density LiFePO4/C composites as cathode materials for lithium-ion batteries, Electrochimica Acta, 2009, V54, Issue 20, p4595-4599
[16] Chen J. M., Hsu C. H., Lin Y. R., Hsiao M. H., Fey G. T. K., High-power LiFePO4 cathode materials with a continuous nano carbon network for lithium-ion batteries, Journal of Power Sources, 2008, V184, Issue 2, p498-502
[17] Chen Z., Dahn J. R., Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy, volumetric energy, and tap density, Journal of the Electrochemical Society, 2002, V149, Issue 9, pA1184-A1189
[18] Chen Z. Y., Zhu H. L., Ji S., Fakir R., Linkov V., Influence of carbon sources on electrochemical performances of LiFePO4/C composites, Solid State Ionics, 2008, V179, p1810-1815
[19] Chung S. Y., Bloking J. T., Chiang Y. M., Electronically conductive phospho-olivines as lithium storage electrodes, Nature Materials, 2002, V1, Issue 2, p123-128
[20] Croce F., Epifanio A. D., Hassoun J., Deptula A., Olczac T., Scrosati B., A novel concept for the synthesis of an improved LiFePO4 lithium battery cathode, Electrochemical and Solid State Letters, 2002, V5, Issue 3, pA47-A50
[21] Delacourt C., Wurm C., Reale P., Morcrette M., Masquelier C., Low temperature preparation of optimized phosphates for Li-battery applications, Solid State Ionics, 2004, V173, p113-118
[22] Delacourt C., Laffont L., Bouchet R., Wurm C., Leriche J. B., Morcrette M., Tarascon J. M., Masquelier C., Toward Understanding of Electrical Limitations (Electronic, Ionic) in LiMPO4 (M=Fe, Mn) Electrode Materials, Journal of The Electrochemical Society, 2005, V152, Issue 5, pA913-A921
[23] Delacourt C., Poizot P., Tarascon J. M., Masquelier C., The existence of a temperature-driven solid solution in LixFePO4 for 0 <= x <= 1, Nature Materials, 2005, V4, Issue 3, p254-260
[24] Delacourt C., Wurm C., Laffont L., Leriche J. B., Masquelier C., Electrochemical and electrical properties of Nb- and/or C-containing LiFePO4 composites, Solid State Ionics, 2006, V177, p333-341
[25] Delacourt C., Poizot P., Levasseur S., Masquelier C., Size effects on carbon-free LiFePO4 powders, Electrochemical and Solid State Letters, 2006, V9, Issue 7, pA352-355
[26] Delmas C., Maccario M., Croguennec L., Le Cras F., Weill F., Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model, Nature Materials, 2008, V7, Issue 8, p665-671
[27] Ding Y., Jiang Y., Xu F., Yin J., Ren H., Zhuo Q., Long Z., Zhang P., Preparation of nano-structured LiFePO4/graphene composites by co-precipitation method, Electrochemistry Communications, 2010, V12, Issue 1, p10-13
[28] Doeff M. M., Wilcox J. D., Kostecki R., Lau G., Optimization of carbon coatings on LiFePO4, Journal of Power Sources, 2006, V163, Issue 1, p180-184
[29] Doherty C. M., Caruso R. A., Smarsly B. M., Adelhelm P., Drummond C. J., Hierarchically Porous Monolithic LiFePO4/Carbon Composite Electrode Materials for High Power Lithium Ion Batteries, Chemistry of Materials, 2009, V21, Issue 21, p5300-5306
[30] Doherty C. M., Caruso R. A., Smarsly B. M., Drummond C. J., Colloidal Crystal Templating to Produce Hierarchically Porous LiFePO4 Electrode Materials for High Power Lithium Ion Batteries, Chemistry of Materials, 2009, V21, Issue 13, p2895-2903
[31] Dominko R., Bele M., Gaberscek M., Remskar M., Hanzel D., Pejovnik S., Jamnik J., Impact of the carbon coating thickness on the electrochemical performance of LiFePO4/C composites, Journal of the Electrochemical Society, 2005, V152, Issue 3, pA607-A610
[32] Dominko R., Bele M., Gaberscek M., Remskar M., Hanzel D., Goupil J. M., Pejovnik S., Jamnik J., Porous olivine composites synthesized by sol-gel technique, Journal of Power Sources, 2006, V153, Issue 2, p274-280
[33] Dominko R., Bele M., Goupil J. M., Gaberscek M., Hanzel D., Arcon I., Jamnik J., Wired porous cathode materials: A novel concept for synthesis of LiFePO4, Chemistry of Materials, 2007, V19, Issue 12, p2960-2969
[34] Egghe L., Theory and practice of the g-index, Scientometrics, 2006, V69, p131-152
[35] Ellis B., Perry L. K., Ryan D. H., Nazar L. F., Small polaron hopping in LixFePO4 solid solutions: Coupled lithium-ion and electron mobility, Journal of the American Chemical Society, 2006, V128, Issue 35, p11416-11422
[36] Ernst H., The Use of Patent Data for Technological Forecasting: The Diffusion of CNC-Technology in the Machine Tool Industry, Small Business Economics, 1997, V9, Number4, P361-381
[37] Fergus J. W., Recent developments in cathode materials for lithium ion batteries, Journal of Power Sources, 2010, V195, Issue4, p939-954
[38] Fisher C. A., Hart P. V. M., Islam M. S., Lithium Battery Materials LiMPO4 (M = Mn, Fe, Co, and Ni): Insights into Defect Association, Transport Mechanisms, and Doping Behavior, Nature Materials, 2008, V20, p5907-5915
[39] Fisher C. A. J., Islam M. S., Surface structures and crystal morphologies of LiFePO4: relevance to electrochemical behavior, Journal of Materials Chemistry, 2008, V18, Issue 11, p1209-1215
[40] Foster R. N., Innovation:The attacker’s advantage, 1986, New York, Summit Books, p316
[41] Frances M., Ginski J. M., Citation patterns of the cardiovascular serial literature, Journal of the American Society for Information Science, 1972, V23, p172-175
[42] Gaines L., Cuenca R., Cost of lithium-ion batteries for vehicles, Technical Report, 2000, Argonne National Laboratory, US
[43] Gangulibabu, Kalaiselvi N., Bhuvaneswari D., Doh C. H., On the Synergistic Effect of Carbonate Anion Directed Shape Controlled Morphology and Super P Carbon in Preparing LiFePO4/C Cathode With Improved Lithium Intercalation Behavior, International Journal of Electrochemical Science, 2010, V5, Issue 11, p1597-1604
[44] Garfield E., Sher, I. H., Torpie, R. J., The use of citation data in writing the history of science, 1964, Philadelphia, Institute for Scientific Information
[45] Gibot P., Casas C. M., Laffont L., Levasseur S., Carlach P., Hamelet S., Tarascon J. M., Masquelier C., Room-temperature single-phase Li insertion/extraction in nanoscale LixFePO4, Nature Materials, 2008, V7, Issue 9, p741-747
[46] Herle P. S., Ellis B., Coombs N., Nazar L. F., Nano-network electronic conduction in iron and nickel olivine phosphates, Nature Materials, 2004, V3, Issue 3, p147-152
[47] Hirsch J. E., An index to quantify an individual's scientific research output, Max Planck Institute for Solid State Research, Germany, 2005
[48] Huang H., Yin S. C., Nazar L. F., Approaching theoretical capacity of LiFePO4 at room temperature at high rates, Electrochemical and Solid State Letters, 2001, V4, Issue 10, pA170-A172
[49] Hummon, N. P., Doreian, P., Connectivity in a citation network:The development of DNA theory, Social Networks, 1989, V11, p39-63
[50] Kadoma Y., Kim J. M., Abiko K., Ohtsuki K., Ui K., Kumagai N., Optimization of electrochemical properties of LiFePO4/C prepared by an aqueous solution method using sucrose, Electrochimica Acta, 2010, V55, Issue 3, p1034-1041
[51] Kao Y. H., Tang M., Meethong N., Bai J. M., Carter W. C., Chiang Y. M., Overpotential-Dependent Phase Transformation Pathways in Lithium Iron Phosphate Battery Electrodes, Chemistry of Materials, 2010, V22, Issue 21, p5845-5855
[52] Kayyar A., Qian H. J., Luo J., Surface adsorption and disordering in LiFePO4 based battery cathodes, Applied Physics Letters, 2009, V95, Issue 22
[53] Kim K., Cho Y. H., Kam D., Kim H. S., Lee J. W., Effects of organic acids as reducing agents in the synthesis of LiFePO4, Journal of Alloys and Compounds, 2010, V504, Issue 1, p166-170
[54] Konarova M., Taniguchi I., Synthesis of carbon-coated LiFePO4 nanoparticles with high rate performance in lithium secondary batteries, Journal of Power Sources, 2010, V195, Issue 11, p3661-3667
[ 55] Laffont L., Delacourt C., Gibot P., Wu M. Y., Kooyman P., Masquelier C., Tarascon J. M., Study of the LiFePO4/FePO4 two-phase system by high-resolution electron energy loss spectroscopy, Chemistry Of Materials, 2006, V18, Issue 23, p5520-5529
[56] Lai C. Y., Xu Q. J., Ge H. H., Zhou G. D., Xie J. Y., Improved electrochemical performance of LiFePO4/C for lithium-ion atteries with two kinds of carbon sources, Solid State Ionics, 2008, V179, p1736-1739
[57] Liang F., Dai Y. N., Yao Y. C., Synthesis of Porous Structure LiFePO4/C as Cathode Material for Lithium-ion Batteries, Chinese Journal of Inorganic Chemistry, 2010, V26, Issue 9, p1675-1679
[58] Liang G. C., Wang L., Ou X. Q., Zhao X., Xu S. Z., Lithium iron phosphate with high-rate capability synthesized through hydrothermal reaction in glucose solution, Journal of Power Sources, 2008, V184, Issue 2, p538-542
[59] Liu J., Wang J. W., Yan X. D., Zhang X. F., Yang G. L., Jalbout A. F., Wang R. S., Long-term cyclability of LiFePO4/Carbon composite cathode material for lithium-ion battery applications, Electrochimica Acta, 2009, V54, Issue 24, p5656-5659
[60] Liu J. S., Lu Y. Y., Lu W. M., Lin J. Y., Data Envelopment Analysis 1978-2010: A Citation-Based Literature Survey, Omega-The International Journal of Management Science, 2011 forthcoming
[61] Madden L.V., Quantification of disease progression, Protection Ecology, 1980, V2, p159-176
[62] Martino J. P., Technological forecasting for decision marking, 1993, 3rd, New York, McGraw-Hill, p484
[63] Marseden P., Laumann E., Mathematical ideas in social structural analysis, Journal of Mathematical Sociology, 1984, V10, p271–294
[64] Maxisch T., Zhou F., Ceder G., Ab initio study of the migration of small polarons in olivine LixFePO4 and their association with lithium ions and vacancies, Physical Review B, 2006, V73, Issue 10, p55
[65] Mina A., Ramlogan R., Tampubolon G., Metcalfe J. S., Mapping evolutionary trajectories: Applications to the growth and transformation of medical knowledge, Research Policy, 2007, V36, p789-806
[66] Morgan D, Van der Ven A., Ceder G., Li conductivity in LixMPO4 (M = Mn, Fe, Co, Ni) olivine materials, Electrochemical and Solid State Letters, 2004, V7, Issue 2, pA30-A32
[67] Myung S. T., Komaba S., Hirosaki N., Yashiro H., Kumagai N., Emulsion drying synthesis of olivine LiFePO4/C composite and its electrochemical properties as lithium intercalation material, Electrochimica Acta, 2004, V49, Issue 24, p4213-4222
[68] Nam K. W., Wang X. J., Yoon W. S., Li H., Huang X., Haas O., Bai J. M., Yang X. Q., In situ X-ray absorption and diffraction studies of carbon coated LiFe1/4Mn1/4Co1/4Ni1/4PO4 cathode during first charge, Electrochemistry Communications, 2009, V11, Issue 4, p913-916
[69] Ni J. F., Zhou H. H., Chen J. T., Zhang X. X., Molten salt synthesis and electrochemical properties of spherical LiFePO4 particles, Materials Letters, 2007, V61, p1260-1264
[70] Nien Y. H., Carey J. R., Chen J. S., Physical and electrochemical properties of LiFePO4/C composite cathode prepared from various polymer-containing precursors, Journal of Power Sources, 2009, V193, Issue 2, p822-827
[71] Nooy, W., Mrvar, A., Batagelj, V., Exploratory social network analysis with Pajek, 2005, V27, Cambridge University Press, New York
[72] Oh S. W., Myung S. T., Bang H. J., Yoon C. S., Amine K., Sun Y. K., Nanoporous Structured LiFePO4 with Spherical Microscale Particles Having High Volumetric Capacity for Lithium Batteries, Electrochemical and Solid State Letters, 2009, V12, Issue 9, pA181-A185
[73] Padhi A. K., Nanjundaswamy K. S., Goodenough J. B., Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries, Journal of the Electrochemical Society, 1997, V144, Issue 4, p1188-1194
[74] Padhi A. K., Nanjundaswamy K. S., Masquelier C., Okada S., Goodenough J. B., Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates, Journal of the Electrochemical Society,1997, V144, Issue 5, p1609-1613
[75] Pearl R., Reed L. J., Kish J. F., The logistic curve and the census count of 1940, 1940, Science, V92, p486-488
[76] Porter, A. L., Forecasting and management of technology, 1991, Wiley, New York, p448
[77] Prosini P. P., Carewska M., Scaccia S., Wisniewski P., Passerini S., Pasquali M., A new synthetic route for preparing LiFePO4 with enhanced electrochemical performance, Journal of the Electrochemical Society, 2002, V149, Issue 7, pA886-A890
[78] Qian J. F., Zhou M., Cao Y. L., Ai X. P., Yang H. X., Template-Free Hydrothermal Synthesis of Nanoembossed Mesoporous LiFePO4 Microspheres for High-Performance Lithium-Ion Batteries, Journal of Physical Chemistry, 2010, V114, Issue 8, p3477-348
[79] Ramana C. V., Mauger A., Gendron F., Julien C. M., Zaghib K., Study of the Li-insertion/extraction process in LiFePO4/FePO4, Journal of Power Sources, 2009, V187, Issue 2, p555-564
[80] Roberto F., Alessandro N., Bart V., Mapping technological trajectories as patent citation networks. An application to data communication standards , Economics of Innovation and New Technology, 2009, V18, P311-336
[81] Saad G., Applying the h-index in exploring bibliometric properties of elite marketing scholars, Scientometrics, 2010, V83, p423-433
[82] Santoro, R.P., Segal, D.J., Newnham, R.E., Magnetic properties of LICOPO4 and LINIPO4, Journal of Physics and Chemistry of Solids, 1966, V27, issue6-7, p1192-1193
[83] Seo D. H., Gwon H., Kim S. W., Kim J., Kang K., Multicomponent Olivine Cathode for Lithium Rechargeable Batteries: A First-Principles Study, Chemistry of Materials, 2010, V22, Issue 2, p518-523
[84] Srinivasan V., Newman J., Existence of path-dependence in the LiFePO4 electrode, Electrochemical and Solid State Letters, 2006, V9, Issue 3, pA110-A114
[85] Sinha N. N., Shivakumara C., Munichandraiah N., High Rate Capability of a Dual-Porosity LiFePO4/C Composite, Acs Applied Materials & Interfaces, 2010, V2, Issue 7, p2031-2038
[86] Sides C. R., Croce F., Young V. Y., Martin C. R., Scrosati B., A high-rate, nanocomposite LiFePO4/Carbon cathode, Electrochemical and Solid State Letters, 2005, V8, Issue 9, pA484-A487
[87] Sun L. Q., Cui R. H., Jalbout A. F., Li M. J., Pan X. M., Wang R. S., Xie H. M., LiFePO4 as an optimum power cell material, Journal of Power Sources, 2009, V189, Issue 1, p522-522
[88] Tang M., Carter W. C., Chiang Y. M., Electrochemically Driven Phase Transitions in Insertion Electrodes or Lithium-Ion Batteries: Examples in Lithium Metal Phosphate Olivines, Annual Review of Materials Research, V40, p501-529
[89] Tang M., Carter W. C., Belak J. F., Chiang Y. M., Modeling the competing phase transition pathways in nanoscale olivine electrodes, Electrochimica Acta, 2010, V56, Issue 2, p969-976
[90] Tucker M. C., Doeff M. M., Richardson T. J., Finones R., Reimer J. A., Cairns E. J., Li-7 and P-31 magic angle spinning nuclear magnetic resonance of LiFePO4-type materials, Electrochemical and Solid State Letters, 2002, V5, Issue 5, pA95-A98
[91] Verspagen B., Mapping technological trajectories as patent citation networks: A study on the history of fuel cell research , Advances in Complex Systems, 2007, Vol. 10, p93-115
[92] Wagemaker M., Ellis B. L., Lutzenkirchen H. D., Mulder F. M., Nazar L.F., Proof of Supervalent Doping in Olivine LiFePO4, Nature Materials, 2008, V20, p6313-6315
[93 ]Wang G. X., Bewlay S. L., Konstantinov K., Liu H. K., Dou S. X., Ahn J. H., Physical and electrochemical properties of doped lithium iron phosphate electrodes, Electrochimica Acta, 2004, V50, p443-447
[94] Wang G. X., Liu H., Liu J. A., Qiao S. Z., Lu G. Q. M., Munroe P., Ahn H., Mesoporous LiFePO4/C Nanocomposite Cathode Materials for High Power Lithium Ion Batteries with Superior Performance, Advanced Materials, 2010, V22, Issue 44, p4944
[95] Wang Y., He P., Zhou H., Olivine LiFePO4: development and future, Energy & Environmental Science, 2011, V4, p805-817
[96] Wang K., Cai R., Yuan T., Yu X., Ran R., Shao Z. P., Process investigation, electrochemical characterization and optimization of LiFePO4/C composite from mechanical activation using sucrose as carbon source, Electrochimica Acta, 2009, V54, Issue 10, p2861-2868
[97] White H. D., McCain, K. W., Visualization of Literatures, Annual Review of Information Science and Technology, 1997, V32, p99-168
[98] Wong H. C., Carey J. R., Chen J. S., Physical and Electrochemical Properties of LiFePO4/C Composite Cathode Prepared From Aromatic Diketone-Containing Precursors, International Journal of Electrochemical Science, 2010, V5, Issue 8, p1090-1102
[99] Yamada A., Chung S. C., Crystal chemistry of the olivine-type Li(MnyFe1-y)PO4 and (MnyFe1-y)PO4 as possible 4 V cathode materials for lithium batteries, Journal of the Electrochemical Society, 2001, V148, Issue 8, pA960-A967
[100] Yamada A., Chung S. C., Hinokuma K., Optimized LiFePO4 for lithium battery cathodes, Journal of the Electrochemical Society, 2001, V148, Issue 3, pA224-A229
[101] Yamada A., Kudo Y., Liu K. Y., Phase diagram of Li-x(MnyFe1-y)PO4 (0 <= x, y <= 1), Journal of the Electrochemical Society, 2001, V148, Issue 10, A1153-A1158
[102] Yamada A., Hosoya M., Chung S. C., Kudo Y., Hinokuma K., Liu K. Y., Nishi Y., Olivine-type cathodes achievements and problems, Journal of Power Sources, 2003, V119, p232-238
[103] Yamada A., Koizumi H., Sonoyama N., Kanno R., Phase change in LixFePO4, Electrochemical and Solid State Letters, 2005, V8, Issue 8, pA409-A413
[104]Yamada A., Yonemura M., Takei Y., Sonoyama N., Kanno R., Fast charging LiFePO4, Electrochemical and Solid State Letters, 2005, V8, Issue 1, pA55-A58
[105] Yamada A., Koizumi H., Nishimura S. I., Sonoyama N., Kanno R., Yonemura M., Nakamura T., Kobayashi Y., Room-temperature miscibility gap in LixFePO4, Nature Materials, 2006, V5, Issue 5, p357-360
[106] Yamada A., Takei Y., Koizumi H., Sonoyama N., Kanno R., Itoh K., Yonemura M., Kamiyama T., Electrochemical, magnetic, and structural investigation of the Li-x(MnyFe1-y)PO4 olivine phases, Chemistry of Materials, 2006, V18, Issue 3, p804-813
[107] Yan X. D., Yang G. L., Liu J., Ge Y. C., Xie H. M., Pan X. M., Wang R. S., An effective and simple way to synthesize LiFePO4/C composite, Electrochemistry Communications Electrochimica Acta, 2009, V54, Issue 24, p5770-5774
[108] Yang M. R., Teng T. H., Wu S. H., LiFePO4/carbon cathode materials prepared by ultrasonic spray pyrolysis, Journal of Power Sources, 2006, V159, Issue 1, p307-311
[109] Yang S. F., Zavalij P. Y., Whittingham M. S., Hydrothermal synthesis of lithium iron phosphate cathodes, Electrochemistry Communications, 2001, V3, Issue 9, p505-508
[110] Yang S. F., Song Y. N., Zavalij P. Y., Whittingham M. S., Reactivity, stability and electrochemical behavior of lithium iron phosphates, Electrochemistry Communications, 2002, V4, Issue 3, p239-244
[111] Yang S. T., Zhao N. H., Dong H. Y., Yang J. X., Hue H. Y., Synthesis and characterization of LiFePO4 cathode material dispersed with nano-structured carbon, Electrochimica Acta, 2005, V51, Issue 1, p166-171
[112] Yin L., Kretschmer H., Hanneman R. A., Liu Z., The evolution of a citation network topology: The development of the journal Scientometrics, Proceedings of the International Workshop on Webometrics, informetrics, and scientometrics & Seventh COLLNET Meeting, France, 2006, p92-113
[113] Yonemura M., Yamada A., Takei Y., Sonoyama N., Kanno R., Comparative kinetic study of olivine LixMPO4 (M = Fe, Mn), Journal of the Electrochemical Society, 2004, V151, Issue 9, pA1352-A1356
[114] Yuan L. X., Wang Z. H., Zhang W. X., Hu X. L., Chen J. T., Huang Y. H., Goodenough J. B., Development and challenges of LiFePO4 cathode material for lithium-ion batteries, Energy & Environmental Science,2011, V4, p269-286
[115] Zaghib K., Goodenough J. B., Mauger A., Julien C., Unsupported claims of ultrafast charging of LiFePO4 Li-ion batteries, Journal of Power Sources, 2009, V194, Issue 2, p1021-1023
[116] Zaghib K., Mauger A., Goodenough J. B., Gendron F., Julien C. M., Electronic, optical, and magnetic properties of LiFePO4: Small magnetic polaron effects, Chemistry of Materials, 2007, V19, Issue 15, p3740-3747
[117] Zhang W. J., Comparison of the Rate Capacities of LiFePO4 Cathode Materials, Journal of the Electrochemical Society, 2010, V157, Issue 10, pA1040-A1046
[118] Zhang W. J., Structure and performance of LiFePO4 cathode materials: A review, Journal of Power Sources, 2011, V196, Issue 6, p2962-2970
[119] Zhang S. S., Allen J. L., Xu K., Jow T. R., Optimization of reaction condition for solid-state synthesis of LiFePO4-C composite cathodes, Journal of Power Sources, 2005, V147, p234-240
[120] Zhang Y., Sun C. S., Zhou Z., Sol-gel preparation and electrochemical performances of LiFe1/3Mn1/3Co1/3PO4/C composites with core-shell nanostructure, Electrochemistry Communications, 2009, V11, Issue 6, p1183-1186
[121] Zhou Y. K., Wang J., Hu Y. Y., O'Hayre R., Shao Z. P., A porous LiFePO4 and carbon nanotube composite, Chemical Communications, 2010, V46, Issue 38, p7151-7153
[122] Zou H. L., Zhang G. H., Shen P. K., Intermittent microwave heating synthesized high performance spherical LiFePO4/C for Li-ion batteries, Materials Research Bulletin, 2010, V45, Issue 2, p149-152
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 郭靜姿(2003):閱讀理解訓練方案對於增進閱讀策略運用與後設認知能力之成效研究。教育研究資訊,1(5),26-50。
2. 王樹仁(1993)。學生利用圖書館狀況之調查研究。高中圖書館館訊,3,48-52。
3. 黃育君(1998)。青少年閱讀行為與公共圖書館服務探討—以雲林縣立文化中心圖書館閱覽室青少年讀者為例。圖書與資訊學刊,26,54-78。
4. 林邦傑(1971)。國民中學學生學習成效與人格特質關係之研究。國立政治大學學報,60 (23),215-246。
5. 殷金重(1992)。國中學生收看電視習慣與學習成效之研究。菁莪季刊,11,65-76。
6. 林文寶(2000)。1999年台灣兒童讀物出版概況。兒童文學家,26,34~36。
7. 馮秋萍(2000)。兒童課外閱讀行為的探究。玄奘學報,2,231-256。
8. 徐新逸、黃麗鈴(1999)。高中生學習成效自我效能與學習成效表現之探討:影響自我效能因素與成就表現相關研究。教育與心理研究,22,267-294。
9. 周祝瑛(2000)。從多元智慧看國內教改的可能性。教師天地,106,11-13。
10. 周倩如(2000)。公共圖書館如何推廣兒童閱讀活動。書苑季刊,44,49-50。
11. 馮秋萍(1998)。兒童閱讀行為之探討。圖書與資訊學刊,25,63-72。
12. 湯芝萱(1997)。漫畫閱讀行為調查報告。文訊月刊,97,44-52。
13. 陳珮慈(1996)。成人閱讀之研究—以台北市立圖書館永春讀者為例。圖書與資訊學刊,18,41-61。
14. 胡鍊輝(1983)。新竹市國中學生閱讀課外書刊之調查研究。中國語文,53 (3),53-64。
15. 陳海泓(1999)。兒童讀物、閱讀課和圖書館館藏對兒童學習成效以及教育機會均等之理論探討。臺南師院學報,32,1-25。