|
[1]N. M. Nguyen and R. G. Meyer, “Start-up and frequency stability in high-frequency oscillators,” IEEE J. Solid-State Circuit, vol. 27, no. 5, pp. 810–820, May 1992.
[2]B.Razavi, RF Microelectronics, Prentice Hall PTR 1998.
[3]陳博軒,辛裕明 “Ka頻段之交錯耦合雙推式壓控振盪器,” 2007.07.
[4]Behzad Razavi Design of Integrated Circuits for Optical Communications, Mc Graw Hill.
[5]B. Razavi, Design of Analog CMOS Integrated Circuits, Mc Graw Hill, 2001.
[6]S. –Jun. Lee, B. Kim, K. Lee, “A Novel High-Speed Ring Oscillator for Multiphase Clock Generation Using Negative Skewed Delay Scheme,” IEEE Journal of Solid-State Circuits, vol. 32, No. 2, February 1997.
[7]劉隽宇, 翁若敏, “運用於IEEE 802.11a CMOS 頻率合成器的低雜訊寬調變範圍之壓控振盪器,” 2005.07.
[8]林曉彤, 莊惠如, “應用於無線通訊之CMOS 射頻微機電開關及2-GHz/5-GHz 壓控振盪器RFIC之研究” 2004.06.
[9]李少華, 張勝良, “Implementation of New High Frequency CMOS VCOs and Injection-Locked Frequency Dividers,” 2007 04.
[10]A. Hajimiri, and T. H. Lee, “The design of low noise oscillators,” Kluwer Academic Publishers, 1999
[11]B. De Muer, M. Borremans, M.Steyaert, and G. Li Puma, “A 2GHz low-phase-noise integrated LC-VCO set with flicker-noise upconversion minimization,” IEEE J. Solid-State Circuits, vol. 35, pp. 1034-1038, 2000.
[12]S. Levantino, C. Samori, A. Bonfanti, S.L.J. Gierkink, A.L. Lacaita, and V. Boccuzzi, “frequency dependence on bias current in 5 GHz CMOS VCOs: impact on tuning range and flicker noise upconversion,” IEEE J. Solid-State Circuits, vol. 37, pp. 1003-1001, 2002.
[13]J. Tang and D. Kasperkovitz, Oscillator Design Efficiency: A New Figure Of Merit For Oscillator Benchmarking.
[14]D. Hauspie, E.-C. Park, and J. Craninckx, “Wide-band VCO with simultaneous switching of frequency band, active core, and varactor size,” IEEE J. Solid-State Circuits, vol. 42, no. 7, pp. 1472–1480, Jul. 2007.
[15]T. H. Lee, “The Design of CMOS Radio Frequency Integrated Circuits,” Cambridge University Press 1998.
[16]John Starr Hamel “LC tank Voltage Controlled Oscillator Tutorial,” Waterloo, Ontario, Canade, 2005
[17]D. B. Leeson, “A simple model of feedback oscillator noise spectrum,” Proceedings of the IEEE, vol. 54, no. 2, pp. 329–330, Feb. 1966
[18]A. Hajimiri and T. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179–194, Feb. 1998.
[19]T. H. Lee and A. Hajimiri, “Oscillator phase noise: a tutorial,” IEEE J. Solid-State Circuit, vol. 35, no. 3, pp. 326–336, Mar. 2000.
[20]J. M. C. Wong and H. C. Luong, “A 1.5-V 4-GHz dynamic-loading regenerative frequency doubler in a 0.35-μm CMOS process,” IEEE Trans. Circuits Syst. II: Analog Digit. Signal Process., vol. 50, no. 8, pp. 450–455, Aug. 2003.
[21]K. Yamamoto. “ A 1.8V Operation 5-GHz-Bnad CMOS Frequency Doubler Using Current-Reuse Circuit Design Technique.” IEEE J. Solid- State Circuits, 40(6):1288.1295, June 2005.
[22]X. Zhang, and Y-H Yun, “A DC to X-band frequency doubler using GaAs HBT MMIC,” 1997 IEEE MTT-S Int. Microwave Symp. Digest, vol. 3, pp. 1213-1216, June 1997.
[23]R. G. Freitag, S. H. Lee, D. M. Krafcsil, D. E. Dawson, and J. E. Degenford, “Stability and improved circuit modeling considerations for high power MMIC amplifiers, ” 1988 IEEE MTT-S International Microwave Symposium Digest, New York, NY, pp. 125-128, May 1988.
[24]R. G. Freitag, “A unified analysis of MMIC power amplifier stability, ” 1992 IEEE MTT-S International Microwave Symposium Digest, Albuquerque, New Mexico, pp. 297-300, June 1992.
[25]唐毓隆, “ 三推式振盪器,” 碩士論文, 國立台灣大學, 民國88 年.
[26]Pin-Pin Huang, Tian-Wei Huang, Huei Wang, E.W. Lin, Yonghui Shu, G.S. Dow, R. Lai, M. Biedenbender and J.H. Elliott, “A 94-GHz 0.35-W power amplifier module, ” IEEE Trans. On Microwave Theory and Tech., vol. 45, no. 12, part 2, pp. 2418-2423, Dec. 1997.
[27]D. L. Ingram, D. I. Stones, J. H. Elliott, Huei Wang, R. Lai and M. Biedenbender, “A 6-W Ka-band power module using MMIC power amplifiers, ” IEEE Trans. On Microwave Theory and Tech., vol. 45, no. 12, part 2, pp. 2424-2430, Dec. 1997.
[28]J. Craninckx and M. S. J. Steyaert, “A 1.75-GHz/3-V dual-modulus divide-by-128/ 129 prescaler in 0.7 um CMOS,” IEEE J. Solid-State Circuits, vol. 31, pp. 890-897, July 1996.
[29]Q. Huang and R. Rogenmoser, “Speed optimization of edge-triggered CMOS circuits for gigahertz single-phase clocks,” IEEE J. Solid-State Circuits, vol. 31, pp. 456-463, Mar. 1996.
[30]J. Lee and B. Razavi, “A 40 GHz frequency divider in 0.18-um CMOS technology,” IEEE J. Solid-State Circuits, vol. 39, pp. 594-601, Apr. 2004.
[31]H. R. Rategh, and T.H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, pp. 813-821, June 1999.
[32]H. D. Wohlmuth and D. Kehrer, “A high sensitivity static 2:1 frequency divider up to 27 GHz in 120 nm CMOS,” IEEE European Solid State Circuits Conference (ESSCIRC), pp. 823-826, Sept. 2002.
[33]M. Tiebout, “A 480 uW 2 GHz ultra low power dual-modulus prescaler in 0.25 um standard CMOS,” IEEE International Symposium on Circuit and System (ISCAS), vol. 5, pp. 741-744, May 2000.
[34]H. Wu, and A. Hajimiri, “A 19 GHz 0.5 mW 0.35 μm CMOS frequency divider with shunt-peaking locking-range enhancement,” IEEE ISSCC Dig. Tech. Papers, pp. 412-413, Feb. 2001.
[35]R. J. Betancourt-Zamora, S. Verma, and T. H. Lee, “1 GHz and 2.8 GHz CMOS injection- locked ring oscillator prescalers,” IEEE Symposium on VLSI Circuits, pp. 47-50, June 2001.
[36]P. Kinget, R. Melville, D. Long, and V. Gopinathan, “An Injection Locking Scheme for Precision Quadrature Generation,” IEEE J. Solid-State Circuits, vol. 37, pp. 845-851, July 2002.
[37]W. Z. Chen, and C. L. Kuo, “18 GHz and 7 GHz superharmonic injection-locked dividers in 0.25pm CMOS technology,” IEEE European Solid State Circuits Conference (ESSCIRC), pp. 89-92, Sept. 2002.
[38]H. Wu, “Signal generation and processing in high-frequency/high-speed silicon-based integrated circuits,” PhD thesis, California Institute of Technology, 2003.
[39]R. Adler, “A study of locking phenomena in oscillators,” Proc. IEEE, vol. 61, pp.1380-1385, Oct. 1973.
[40]D. Friedman, M. Meghelli, B. Parker, J. Yang, H. Ainspan, and M. Soyuer, “A single-chip 12.5Gbaud transceiver for serial data communication,” IEEE Symp.VLSI Circuits, Digest of Tech., June 2001, pp. 145–148.
[41]D. Friedman, M. Meghelli, B. Parker, H. Ainspan, and M. Soyuer, “Sub-picosecond jitter SiGe BiCMOS transmit and receive PLLs for 12.5Gbaud serial data communication,” IEEE Symp. VLSI Circuits, Digest of Tech., June 2000, pp. 132–135.
[42]J.-H., C. Zhan, J. S. Duster and K. T. Kornegay, “A 25-GHz emitter degenerated LC VCO,” IEEE J. Solid-State Circuits, vol. 39, pp. 2062- 2064, Nov. 2004.
[43]G. Niu, J. D. Cressler, Z. Jin, S. Zhang, J. B. Juraver, M. Borgarino, R. Plana,and O. Llopis, “Transistor noise in SiGe HBT RF technology,” in Proc. IEEE BCTM, 2000, pp. 207–210.
[44]S. J. Yun, C. Y. Cha, H. C. Choi, and S. G. Lee, “RF CMOS LC-oscillator with source damping resistors,” IEEE Microwave and Components Letters, vol. 16, no. 9, pp. 511-513, Sept, 2006.
[45]B. Jung and R. Harjani, “A wide tuning range VCO using capacitive source degeneration,” IEEE Proc. Int. Symp. Circuits and Systems, Vol.4, 23-26 May 2004.
[46]Y.-H. Chuang, S.-L. Jang, S.-H. Lee, R.-H. Yen and J.-J. Jhao, “5 GHz low power current-reused balanced CMOS differential Armstrong VCOs,” IEEE Microw. Wireless Compon. Lett., pp. 139-141, Feb. 2007.
[47]R. Mukhopadhyay, C. H. Lee, J. Laskar, “A 580 μW 1.8-6 GHz multiband switched-resonator SiGe VCO with 0.3 V supply voltage,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 11, pp. 793-795, 2007.
[48]G. D. Astis, D. Cordeau, J.-M. Paillot, and L. Dascalescu, “A 5-GHz fully integrated full PMOS low-phase-noise LC VCO,” IEEE J. Solid-State Circuits, vol. 40, no. 10, pp. 2087–2091, Oct. 2005.
[49]Y. Chen, K. Mouthaan, “Wideband varactorless LC VCO using a tunable negative-inductance cell, ” IEEE Trans. Circuits And System-I:Regular Papers, vol. 57, no. 10, pp. 2609-2617, Oct. 2010.
[50]S. S. Myoung, J. G. Yook, “Low-phase-noise high-efficiency MMIC VCO based on InGap/GaAs HBT with the LC filter, ” Microwave And Optical Tech. Lett., vol. 44, no.2, pp. 123-126, January, 2005.
[51]V. Kakani, F. F. Dai, and R. C. Jaeger, “A 5 GHz low-power series coupled BiCMOS quadrature VCO with wide tuning range,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 6, pp. 457-459, Jun. 2007.
[52]S.-L. Jang, Y.-K. Wu, C.-C. Liu and J.-F. Huang, “A dual-band CMOS voltage-controlled oscillator implemented with dual-resonance LC tank,” IEEE Microw. Wireless Compon. Lett., vol. 19, No. 12, pp.816-818, Dec. 2009.
[53]N. T. Tchamov, S. S. Broussev, I. S. Uzunov, and K. K. Rantala, “Dual-band LC VCO architecture with a fourth-order resonator,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 54, no. 3, pp. 277–281, Mar. 2007.
[54]A. Hajimiri and T. Lee, “Design issues in CMOS differential LC oscillators,” IEEE J. of Solid-State Circuits, vol. 34, no. 5, pp. 717-724, May 1999.
[55]R. Aparicio and A. Hajimiri, “A noise-shifting differential Colpitts VCO,” IEEE J. of Solid-State Circuits, vol. 37, no. 12, pp. 1728-1736, Dec. 2002.
[56]S.-H. Lee, Y.-H. Chuang, S.-L. Jang, and C.-C. Chen, “Low-phase noise Hartley differential CMOS voltage controlled oscillator,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 2, pp. 145-147, Feb. 2007.
[57]S.-L. Jang, Y.-J. Song, and C.-C. Liu, “ A differential Clapp VCO in 0.13 µm CMOS Technology,” IEEE Microw. Wireless Compon. Lett., pp. 404-406, June, 2009
[58]S.-L. Jang, C.-C. Liu, Y.-J. Song, and M.-H. Juang , “ A low voltage balanced Clapp VCO in 0.13 μm CMOS technology,” Microwave and Optical Technology Lett., vol. 52, no. 7, pp., 1623-1625, 2010.
[59]A. Goel and H. Hashemi, “Concurrent dual-frequency oscillators and phase locked loop,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 8, pp. 1846-1860, August 2008.
[60]S.-L. Jang, L.-T. Chou and C.-W. Chang, “ Colpitts VCO with gate-series high-quality factor LC resonator,” Microwave and Optical Technology Lett., vol. 52, no. 10, pp., 2170-2173, 2010
[61]C.-H. Kim, S.-H. Shin and H.-J. Yoo, “A dual band CMOS quadrature VCO for low power and low phase noise application,” IEEE Conf. Radio Frequency Integration Technology (RFIT), December 2007, pp 310-313.
[62]S.-L. Jang, Y.-K. Wu, C.-C. Liu and J.-F. Huang, ” A dual-band CMOS voltage-controlled oscillator implemented with dual-resonance LC tank,” IEEE Microw. Wireless Compon. Lett., vol. 19, No. 12, pp.816-818, Dec. 2009.
[63]S. –L. Jang, C.-W. Chang, H.-A. Yeh, M.-H. Juang, and Y.-J. Song, ” CMOS quadrature VCOs using the diode coupling technique,” Microwave and Optical Technology Lett., pp.551-553, March, 2011.
[64]A. Bonfanti, S. Levantino, C. Samori, and A. L. Lacaita, “A varactor configuration minimizing the amplitude-to-phase noise conversion in VCOs,” IEEE Trans. Circuits Syst. I, vol. 53, no. 3, pp. 481–488, Mar. 2006.
[65]S. Rong and H. C. Luong, “A 1V 4 GHz-and-10 GHz transformer-based dual-band quadrature VCO in 0.18 μm CMOS,” CICC2007, pp.817-820, Sept. 2007.
[66]H. Shin, Z. Xu, and M. F. Chang, “A 1.8-V 6/9-GHz switchable dual-band quadrature LC VCO in SiGe BiCMOS technology,” in IEEE RFIC Symp. Jun. 2002, pp. 71–74.
[67]S.-L. Jang, C.-W. Lin, C. C. Liu, and M.-H. Juang, ” An active-inductor injection locked frequency divider with variable division ratio,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 1, pp. 39-41, Jan. 2009.
[68]S.-L. Jang, C.-W. Tai, and C.-F. Lee,” Divide-by-3 injection locked frequency divider implemented with active inductor,” Microwave and Optical Technology Lett., Vol. 50, no. 6, pp.1682-1685, June, 2008.
[69]S.-L. Jang, and C.-W. Chang, ” A 90nm CMOS LC-tank divide-by-3 injection-locked frequency divider with record locking range,” IEEE Microw. Wireless Compon. Lett., vol. 20, pp.229-231, April, 2010.
[70]S.-L. Jang, Y.-S. Chen, C.-W. Chang, and C.-C. Liu, ” A wide-locking range ÷3 injection-locked frequency divider using linear mixer,” IEEE Microw. Wireless Compon. Lett., vol. 20, pp.390-392, July, 2010.
[71]L.-H. Lu, H.-H. Hsieh, and Y.-T. Liao, “A wide-tuning-range CMOS VCO with a differential tunable active inductor,” IEEE Trans. Microw. Theory Tech., vol. 54, no.9, pp.3462-3468, Sept. 2006.
[72]H. Wu and L. Zhang, “A 16-to-18GHz 0.18μm epi-CMOS divide-by-3 injection-locked frequency divider,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2006, pp.27–29.
|