跳到主要內容

臺灣博碩士論文加值系統

(98.84.18.52) 您好!臺灣時間:2024/10/10 20:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許朝翔
研究生(外文):Chao-Hsiang Hsu
論文名稱:應用局部放電技術於交鏈聚乙烯電力電纜接續匣之瑕疵辨識
論文名稱(外文):Application of the Partial Discharge Technique to the Defect Recognition of XLPE Power Cable Joint
指導教授:張宏展
指導教授(外文):Hong-Chan Chang
口試委員:張宏展
口試日期:2011-06-21
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:92
中文關鍵詞:關鍵詞: 電力電纜局部放電經驗模式分解希爾伯特-黃轉換分形理論類神經網路
外文關鍵詞:Keywords: Power CablePartial DischargeEmpirical Mode DecompositionHilbert-Huang TransformFractal TheoryNeural Networks.
相關次數:
  • 被引用被引用:3
  • 點閱點閱:233
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:1
電力設備中之絕緣材料因長期運轉、環境變化及人為等因素,將導致絕緣劣化的發生,進而引起無預警的停電事故,甚至造成經濟上的損失,因此如何達到預防性的故障診斷,實為一重要之課題。
本研究旨在基於局部放電的25kV XLPE級電力電纜接續匣瑕疵特徵辨識系統之研究。首先對於電力電纜接續匣常發生故障之可能模式進行整理分析,係由廠商製作各類型人工瑕疵模型的電力電纜接續匣,接著,建置相關的局部放電檢測設備,利用磁場耦合與音射檢測技術針對四種電力電纜接續匣試驗模型進行局部放電量測,將所量測到的試驗數據,經由局部放電3D圖譜與希爾伯特-黃轉換進行分析。其次在運用分形理論擷取圖譜代表性特徵,作為類神經網路之輸入數據,並進行瑕疵模型之辨識。但由於現場加壓檢測時,有時會受到雜訊的干擾,而影響辨識系統之正確性,於是在本文中以人工方式,加入不同大小之隨機雜訊,並探討對於辨識系統之影響。最後,提出以經驗模式分解方法將訊號裡的雜訊濾除,經由實驗數據發現,經驗模式分解確實可有效降低雜訊對訊號的影響,進而提高系統之辨識率。
The insulation materials in power equipment can deteriorate because of long-term operation, environmental changes or human factors, and cause sudden power outages with subsequent economic losses. Therefore, it is important to have the technology to diagnose faults and so prevent such system failures.
In this research we established the characteristics of a defect recognition system based on the partial discharge of a 25KV XLPE power cable joint. First, we analyzed the fault types in power cable joints and made artificial defect models of each common fault type. Then, we constructed partial discharge detection equipment using magnetic coupling and the acoustic emission detection technique for partial discharge detection of the four power cable joint experimental models and analyzed these data by partial discharge 3D images and the Hilbert-Huang transform. Secondly, we used fractal theory to extract representative features of the 3D images as neural network input data and executed defect recognition. However, noise interference can affect recognition accuracy during high-voltage testing; therefore, we artificially put random noise into the original signal to investigate its effect on the recognition system. Finally we have proposed an empirical mode decomposition method to filter out noise and reduce the noise effect in order to increase accuracy.
中文摘要..................................................I
Abstract ....................................................II
致謝 ....................................................III
目錄 ....................................................IV
圖目錄 ....................................................VII
表目錄 ....................................................XI
第一章 緒論 ............................................1
1.1 研究背景與動機.......................................1
1.2 研究目的與方法.......................................2
1.3 章節概要.............................................3
第二章 局部放電與檢測方法簡介...............................5
2.1 局部放電定義與相關名詞...............................5
2.1.1 局部放電定義.........................................5
2.1.2 局部放電相關名詞.....................................5
2.2 局部放電原理與類型 ...................................8
2.2.1 局部放電原理.........................................8
2.2.2 局部放電類型.........................................9
2.3 局部放電訊號檢測方法.................................12
2.3.1 電氣的檢測方法.......................................12
2.3.2 非電氣的檢測方法.....................................16
2.4 局部放電基本圖譜介紹.................................17
2.5 本章結論.............................................20
第三章 訊號轉換分析基本理論.................................22
3.1 小波轉換.............................................22
3.1.1 連續小波轉換.........................................22
3.1.2 離散小波轉換.........................................25
3.1.3 基於小波轉換的雜訊濾除方式...........................27
3.2 希爾伯特-黃轉換......................................29
3.2.1 經驗模式分解.........................................29
3.2.2 希爾伯特頻譜.........................................32
3.2.3 基於經驗模式分解的雜訊濾除方式.......................35
3.3 圖譜比較結果.........................................35
3.4 本章結論.............................................38
第四章 局部放電檢測系統與圖譜分析...........................40
4.1 試驗模型.............................................40
4.2 試驗環境與設備.......................................42
4.3 局部放電檢測器.......................................45
4.3.1 磁場耦合感測器.......................................45
4.3.2 音射感測器...........................................45
4.3.3 量測人機介面.........................................47
4.4 局部放電基本圖譜.....................................49
4.5 本章結論.............................................54
第五章 局部放電特徵擷取與辨識方法...........................55
5.1 分形幾何簡介.........................................55
5.2 特徵擷取方法.........................................60
5.2.1 差盒維數.............................................60
5.2.2 間隙度...............................................61
5.3 類神經網路簡介.......................................63
5.4 類神經網路的架構.....................................64
5.4.1 類神經網路基本架構 ...................................64
5.4.2 倒傳遞網路...........................................69
5.5 本章結論.............................................70
第六章 應用電氣與音射法於瑕疵形態辨識探討...................71
6.1 試驗數據的特徵擷取 ...................................71
6.2 辨識結果與討論.......................................75
6.2.1 倒傳遞網路之辨識結果.................................75
6.2.2 加入雜訊之辨識結果 ...................................77
6.3 本章結論 ............................................81
第七章 結論及未來展望.......................................82
7.1 結論.................................................82
7.2 未來展望.............................................83
參考文獻 .....................................................84
附錄A........................................................89
作者簡述 .....................................................92
[1]成永紅,電力設備絕緣檢測與診斷,中國電力出版社,第1-5頁。
[2]台灣電力股份有限公司,「配電系統設備部分放電圖譜之研究完成報告」,民國九十八年。
[3]N. C. Sahoo, M. M. A. Salama, “Trends in Partial Discharge Pattern Classification:A Survey,” IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 12, No. 2, pp. 248-264, Jun. 2005.
[4]S. A. Boggs, “Partial discharge:Overview and signal generation”, IEEE Electrical Insulation Magazine, Vol. 6, No. 4, pp. 33-40, Feb. 1990.
[5]“High-Voltage Test Techniques-Partial Discharge Measurements,” IEC 60270, 2001.
[6]D. A. Nattrass, “Partial Discharge Measurement and Interpretation,” IEEE Electrical Insulation Magazine, Vol. 4, No. 3, pp. 10-23, May. 1988.
[7]F. H. Kreuger, E. Gulski, and A. Krivda, “Classification of Partial Discharge,” IEEE Transactions on Electrical Insulation, Vol. 28, No. 6, pp. 917-931, Dec. 1993.
[8]李建鋒,「運用脈衝電流於模鑄式比流器之加速老化研究」,碩士論文,國立台灣科技大學電機工程研究所,2006年。
[9]「電力設備局部放電現場測量導則」,中國大陸電力行業標準DL 417-91。
[10]E. Gulski, “Digital Analysis of Partial Discharge,” IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 2, No. 5, pp. 822-837, Oct. 1995.
[11]吳瑞南、林育勳,「局部放電電氣訊號量測技術介紹」,量測資訊,第85期,第35~38頁,2002年5月。
[12]朱康、李建明,「高壓電氣設備試驗方法」,中國電力出版社,第2版,第298~322頁,2000年2月。
[13]J. P. Bolhuis, E. Gulski, and J. J. Smit, “Monitoring and diagnostic of transformer solid insulation,” IEEE Transactions on Power Delivery, Vol. 17, No. 2, pp. 528-536, Apr. 2002.
[14]X. Zhang, J. Ren, J. Tang, C. Sun, “Kernel statistical uncorrelated optimum discriminant vectors algorithm for GIS PD recognition,” IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 16, No. 1, pp. 206-212, Feb. 2009.
[15]D. Zmarzly, T. Boczar, “Application of Wavelet Analysis to Acoustic Emission Pulses Generated by Partial Discharges,” IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 11, No. 3, pp. 433-449, Jun. 2004.
[16]Y. Tian, P. L. Lewin, A. E. Davies and Z. Richardson, “Acoustic Emission Detection of Partial Discharges in Polymeric Insulation,” High Voltage Engineering Symposium, pp. 22-27, Aug. 1999.
[17]A. Grossman, J. Morlet, “Decomposition of Hardy Functions into Square Integrable Wavelets of Constant Shape,” SIAM Journal on Mathematical Analysis, Vol. 15, pp.723-736, Feb. 1984.
[18]董長虹等,Matlab小波分析工具箱原理與應用,北京,國防工業出版社,2004年。
[19]林漢偉,「應用二維小波轉換與類神經網路於比流器局部放電圖譜之辨識」,國立台灣科技大學電機工程研究所,碩士論文,2004年。
[20]林德龍,「以小波理論為基礎之GIS部分放電檢測研究」,國立成功大學電機工程研究所,碩士論文,2005年。
[21]S. Mallat, “A Theory for Multiresolution Signal Decomposition: The Wavelet Representation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 11, No. 7, pp. 674-693, Jul. 1989.
[22]S. Mallat, “Multiresolution Channel Decomposition of Images and Wavelet Models,” IEEE Transactions on Acoustics, Speech, Signal Processing, Vol. 37, No. 7, pp. 2091-2110, Dec. 1989.
[23]D. L. Donoho, “De-noising by Soft-Thresholding,” IEEE Transactions on Information Theory, Vol. 41, No. 3, pp. 613-627, May. 1995.
[24]N. E. Huang, Z. Shen, and S. R. Long, “A new review of nonlinear water waves: The Hilbert spectrum,” Annu. Rev. Fluid Mech, Vol. 31, pp. 417-457, Jan. 1999.
[25]于德介、楊宇,機械故障診斷的Hilbert-Huang變換方法,北京,科學出版社,2006年。
[26]R. Yan, “Hilbert–Huang Transform-Based Vibration Signal Analysis for Machine Health Monitoring,” IEEE Transactions on instrumentation and measurement, Vol. 55, No. 6, pp. 2320-2329, Dec. 2006.
[27]X. Wang, B. Li, Z. Liu, H. T. Roman, O. L. Russo, K. K. Chin; K. R. Farmer, “Analysis of Partial Discharge Signal Using the Hilbert–Huang Transform,” IEEE Transactions on power Delivery, Vol. 21, No. 3, pp. 1063-1067, Jul. 2006.
[28]A. Daviu, R. Guasp, P. Sanchez, Perez, “A Critical Comparison Between DWT and Hilbert–Huang-Based Methods for the Diagnosis of Rotor Bar Failures in Induction Machines,” IEEE Transactions on Industy applications, Vol. 45, No. 5, pp. 1794-1803, Sep. 2009.
[29]Y. W. Tang, C. C. Tai, C. C. Su, h. Y. Chen, J. C. Hsieh, J. F. Chen, “Partial Discharge Signal Analysis Using HHT for Cast-Resin Dry-Type Transformer,” IEEE International Conference on Condition Monitoring and Diagnosis, Tainan, pp. 521-524, Apr. 2008.
[30]Y. W. Tang, C. C. Tai, C. C. Su, “Data Analysis Using Hilbert-Huang Transform for Partial Discharge in Low Voltage Motors,” IEEE International Conference on Intelligent Systems Applications to Power Systems, pp. 1-4, Nov. 2007.
[31]K. Uchida, S. Kobayashi, T. Kawashima, H. Tanaka, S. Sakuma, K. Hirotsu, and H. Inoue, “Study on detection for the defects of XLPE cable lines,” IEEE Transactions on Power Delivery, Vol. 11, No. 2, pp. 663-668, Apr. 1996.
[32]B. X. Du, G. Wei, Y. Wu, M. Ouyang, “Wavelet-based and fractal theory on partial discharge classification,” IEEE International Conference on Electrical Insulating Materials, pp. 463-466, Jun. 2005.
[33]Q. Zhang, Y. Lu, X. Zhang, “PD Pattern Classification for dc System Based on Fractal Dimensions Combined with Statistical Features,” IEEE International Conference on Properties and applications of Dielectric Materials, pp. 427-430, Jun. 2006.
[34]張濟忠,分形,北京,清華大學出版社,1995年。
[35]H. Peitgen, H. Jurgens, Chaos and Fractals New Frontier of Science, 2004.
[36]古峰昌,「XLPE電力電纜局部放電量測與瑕疵模式辨識」,碩士論文,國立勤益科技大學電機工程研究所,2009年。
[37]N. Sarkar and B. B. Chaudhuri, “An Efficient Differential Box-Counting Approach to Compute Fractal Dimension of Image,” IEEE Transactions on Systems, Man and Cybernetics, Vol. 24, No. 1, pp. 115-120, Jan. 1994.
[38]J. Li, C. Sun, S. Grzybowski, “Partial Discharge Image Recognition Influenced by Fractal Image Compression,” IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 15, No. 2, pp. 496-504, Apr. 2008.
[39]許晉維,「應用類神經網路於比流器局部放電圖譜之辨識」,國立台灣科技大學電機工程研究所,碩士論文,2003年。
[40]王進德、蕭大全,類神經網路與模糊控制理論入門,台北,全華科技,民國九十二年。
[41]羅華強,類神經網路-Matlab的應用,新竹,清蔚科技,民國九十年。
[42]M. Hoof, B. Freisleben and R. Patsc, “PD source identification with novel discharge parameters using counterpropagation neural networks,” IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 4, No. 1, pp. 17-32, Feb. 1997.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top