跳到主要內容

臺灣博碩士論文加值系統

(44.192.95.161) 您好!臺灣時間:2024/10/16 03:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳致維
研究生(外文):Chi-wei Chen
論文名稱:考慮碳排放及風電容量佔比之最佳火力機組調度
論文名稱(外文):Optimal Thermal Unit Commitment under CO2 Emission and Wind Power Penetration Consideration
指導教授:張宏展
指導教授(外文):Hong-Chan Chang
口試委員:張宏展
口試日期:2011-06-21
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:87
中文關鍵詞:機組排程備轉容量二氧化碳粒子群演算法蒙地卡羅模擬法
外文關鍵詞:Unit CommitmentSpinning ReserveCO2Particle Swarm OptimizationMonte Carlo Simulation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:171
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
隨著二氧化碳的排放越來越受國際間的關注,只考慮發電成本最低的系統備轉容量規劃方式已不夠充分,因此,本論文旨在提出考量二氧化碳排放量及再生能源併入時的系統可靠度指標變化下的最佳備轉容量規劃,以供電力調度上的選擇。首先,採用發電成本及碳排放量兩種不同的目標規劃模式,然後以不同的備轉容量值和不同的風電佔比來做機組排程的求解,由於發電排程屬於大型非線性的問題,不利於用一般的數學規劃方式來求解,本文採用具全域搜索能力的粒子群演算法來求解發電排程的問題。另外為了使獲得全域最佳解的機率增高,搭配適當的編碼技術來符合限制條件。其次,依據這些機組排程解,利用蒙地卡羅模擬法中的狀態持續時間取樣法來得出其可靠度評估。此模擬方案的特點在於使決策者能夠在顧及環保、經濟及可靠性因素下擬訂適合的備轉容量值。
最後,以台電公司的27部機組系統進行測試,研究結果顯示本論文所提之模擬規劃方法確實有助於電力業者決定備轉容量值。
With the increasing international concern about carbon dioxide (CO2) emissions, it is no longer adequate to plan spinning reserves taking only the lowest production cost into account. Therefore, the purpose of this thesis was to present an optimal spinning reserve planning scheme considering CO2 emissions and the variations in the system reliability index while incorporating renewable energy in the power dispatch selection. First, we introduced two different objective scheduling modes of production costs and CO2 emissions, and then solved the unit commitment problem in different spinning reserve values and wind penetrations. Owing to the large-scale non-linear programming problem of generation scheduling, the issues were hard to solve by a general mathematical programming method. This study applied a particle swarm algorithm with a global search capability to the generation scheduling problem. Furthermore, in order to obtain a higher probability of the global optimum, the simulation process used appropriate coding techniques to meet the constraints. Secondly, we utilized the state duration sampling of the Monte Carlo simulation to acquire the reliability assessment of these unit commitment solutions. The salient feature of the simulation strategy was that the decision-maker could make a proper spinning reserve level involving environmental, economic and reliability factors simultaneously.
Finally, taking the 27-unit system of the Tai-power as a test example, the simulation results showed that the proposed approach could indeed assist the power industry in setting the value of the spinning reserve.
中文摘要…………. I
Abstract…………. II
致謝…………. III
目錄…………. IV
圖目錄.................. VII
表目錄………. IX
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究步驟與目的 3
1.3 章節概要 6
第二章 粒子群演算法與蒙地卡羅模擬法 8
2.1 粒子群演算法 8
2.1.1 簡介 8
2.1.2 基本工作原理 8
2.1.3 粒子群演算法流程 9
2.1.4 粒子群演算法範例說明 13
2.1.5 粒子群演算法與其他方法之比較 14
2.2 蒙地卡羅模擬法 16
2.2.1 簡介 16
2.2.2 蒙地卡羅模擬法之特點 16
2.2.3 蒙地卡羅模擬法求解電力系統可靠度指標之模型 19
2.2.4 蒙地卡羅模擬法求解步驟 24
第三章 經濟調度 26
3.1 簡介 26
3.2 數學模型 27
3.2.1 發電成本函數 27
3.2.2 二氧化碳排放模型 28
3.3 目標函數 30
3.4 限制條件 31
3.4.1 電力平衡 31
3.4.2 網路損失 31
3.4.3 升降載率限制及發電量上下限 32
3.4.4 禁止操作區 33
3.5 粒子群演算法的求解過程 35
3.5.1 編碼與解碼流程 35
第四章 機組排程 43
4.1 簡介 43
4.2 目標函數 44
4.3 限制條件 44
4.3.1 電力供需平衡 44
4.3.2 發電量上下限及升降載率限制 45
4.3.3 火力機組最少併聯及最少解聯時間 45
4.3.4 系統備轉容量 45
4.3.5 機組必須運轉 46
4.3.6 機組無法運轉 46
4.4 粒子群演算法的求解過程 47
4.4.1 編碼方式 47
4.4.2 解碼方式 47
4.4.3 發電成本的計算 52
4.4.4 適應函數的計算 53
4.4.5 粒子群的移動與更新 54
第五章 模擬結果與討論 57
5.1 簡介 57
5.2 發電成本最佳化模式 57
5.2.1 模擬結果 62
5.2.2 風電容量佔比分析討論 72
5.3 二氧化碳排放量最佳化模式 74
5.3.1 模擬結果 74
第六章 結論與未來展望 80
6.1 結論 80
6.2 未來研究方向 80
參考文獻……. 82
作者簡述……. 87
[1]UNFCCC, Kyoto Protocol, The United Nations Framework Convention on Climate Change, English Conference of the Parties, Third session Kyoto, Dec. 1997.
[2]IEA/OECD,“Key world energy satistics 2010 Edition,”Commodities Now Apr. 2011, [Online]. Available:http://www.iea.org/tex
tbase/nppdf/free/2010/key_states_2010.pdf.
[3]范建得,京都議定書與清潔發展機制CDM100問,台北市:元照出版有限公司,2008年4月。
[4]王運銘等,2010年能源產業技術白皮書,台北市:經濟部能源局,2010年4月。
[5]劉銘龍等,2010年環境白皮書,台北市:行政院環境保護署,2010年10月。
[6]張鼎煥、呂威賢,「我國風力發電發展政策效益分析」,工業技術研究院能源與環境研究所,2007年1月。
[7]I. G. Damousis, A. G. Bakirtzis, and P. S. Dokopoulos,“A solution to the unit-commitment problem using integer-coded genetic algorithm, ”IEEE Transactions on Power Systems, vol. 19, pp. 1165-1172, 2004.
[8]K. A. Juste, H. Kita, E. Tanaka, and J. Hasegawa,“An evolutionary programming solution to the unit commitment problem,”IEEE Transactions on Power Systems, vol. 14, pp. 1452-1459, 1999.
[9]V. S. Pappala and I. Erlich,“A Variable-Dimension Optimization Approach to Unit Commitment Problem,“IEEE Transactions on Power Systems, vol. 25, pp. 1696-1704, 2010.
[10]Ortega Vazquez, M. A., “Optimizing the spinning reserve requirements considering failures to synchronize, ” Ph.D. thesis, University of Manchester, UK, 2006.
[11]J. Svoboda, T. C. Li, L. C. An, and R. B. Johnson,“Short-term resource scheduling with ramp constraints [power generation scheduling], ” IEEE Transactions on Power Systems, vol. 12, pp. 77-83, 1997.
[12]J. Kennedy and R. Eberhart,“Particle swarm optimization,”Proceedings IEEE International Conference on Neural Networks, pp. 1942-1948 vol.4, 1995.
[13]R. Eberhart and J. Kennedy,“A new optimizer using particle swarm theory,”Proceedings of the Sixth International Symposium on Micro Machine and Human Science, pp. 39-43, 1995.
[14]R. Eberhart and S. Yuhui,“Particle swarm optimization: developments, applications and resources, ”Proceedings of the 2001 Congress on Evolutionary Computation, pp. 81-86 vol. 1, 2001.
[15]M. G. Hinchey, R. Sterritt, and C. Rouff,“Swarms and Swarm Intelligence, ”Computer, vol. 40, pp. 111-113, 2007.
[16]R. Billinton and W. Li, Reliability assessment of electric power systems using Monte Carlo methods, Plenum press, New York, 1994.
[17]R. Billinton and R. N Allen, Reliability evaluation of engineering systems concepts and techniques, 2nd ed. Plenum press, New York and London,1992.
[18]R. Ghajar and R. Billinton,“A Monte Carlo simulation model for the adequacy evaluation of generating systems, ”Reliability Engineering & System Safety, vol. 20, pp. 173-186, 1988.
[19]R. Billinton and W. Wangdee,“Impact of utilising sequential and nonsequential simulation techniques in bulk-electric-system reliability assessment, ”IEE Proceedings-Generation, Transmission and Distribution, vol. 152, pp. 623-628, 2005.
[20]A. Sankarakrishnan and R. Billinton,“Sequential Monte Carlo simulation for composite power system reliability analysis with time varying loads, ”IEEE Transactions on Power Systems, vol. 10, pp. 1540-1545, 1995.
[21]Y. G. Hegazy, M. M. A. Salama, and A. Y. Chikhani,“Adequacy assessment of distributed generation systems using Monte Carlo Simulation, ”IEEE Transactions on Power Systems, vol. 18, pp. 48-52, 2003.
[22]S. H. Karaki, B. A. Salim, and R. B. Chedid,“Probabilistic model of a two-site wind energy conversion system, ”IEEE Transactions on Energy Conversion, vol. 17, pp. 530-536, 2002.
[23]J. Hetzer, D. C. Yu, and K. Bhattarai,“An economic dispatch model incorporating wind power, ”IEEE Transactions on Energy Conversion, vol. 23, pp. 603-611, 2008.
[24]ISO 14064-1, 溫室氣體盤查議定書,「97年度溫室氣體排放盤查及計算準則」,台灣電力公司,台北,2009年2月。
[25]G. Zwe-Lee,“Particle swarm optimization to solving the economic dispatch considering the generator constraints, ”IEEE Transactions on Power Systems, vol. 18, pp. 1187-1195, 2003.
[26]Cheng-Chien Kuo,“A Novel Coding Scheme for Practical Economic Dispatch by Modified Particle Swarm Approach, ”IEEE Transactions on Power Systems, vol. 23, pp. 1825-1835, 2008.
[27]S. K. Tong, S. M. Shahidehpour, and Z. Ouyang,“A heuristic short-term unit commitment, ”IEEE Transactions on Power Systems, vol. 6, pp. 1210-1216, 1991.
[28]Wood, A. J. and B.F. Wollenberg, Power generation, operation, and control, 2nd ed. John Wiley & Sons, New York, 1996.
[29]F. Zhuang and F. D. Galiana,“Unit commitment by simulated annealing, ”IEEE Transactions on Power Systems, vol. 5, pp. 311-318, 1990.
[30]S. A. Kazarlis, A. G. Bakirtzis, and V. Petridis,“A genetic algorithm solution to the unit commitment problem, ”IEEE Transactions on Power Systems, vol. 11, pp. 83-92, 1996.
[31]K. S. Swarup and S. Yamashiro,“Unit commitment solution methodology using genetic algorithm, ”IEEE Transactions on Power Systems, vol. 17, pp. 87-91, 2002.
[32]G. Damousis, A. G. Bakirtzis, and P. S. Dokopoulos,“A solution to the unit-commitment problem using integer-coded genetic algorithm, ”IEEE Transactions on Power Systems, vol.19, pp. 1165-1172, 2004.
[33]X. Yuan, H. Nie, A. Su, L. Wang, and Y. Yuan,“An improved binary particle swarm optimization for unit commitment problem, ”Expert Systems with Applications, vol. 36, pp. 8049-8055, 2009.
[34]V. N. Dieu and W. Ongsakul,“Enhanced augmented Lagrangian Hopfield network for unit commitment, ”IEE proceedings-generation, transmission and distribution, vol. 153, pp. 624-632, 2006.
[35]T. O. Ting, M. V. C. Rao, and C. K. Loo,“A novel approach for unit commitment problem via an effective hybrid particle swarm optimization, ”IEEE Transactions on Power Systems, vol. 21, pp. 411-418, 2006.
[36]賴慶育,「混合型線性整數規劃應用於火力機組發電排程預定之研究」,碩士論文,國立中正大學電機工程研究所,2004年。
[37]C. Grigg, P. Wong, P. Albrecht, R. Allan, M. Bhavaraju, R. Billinton, Q. Chen, C. Fong, S. Haddad, S. Kuruganty, W. Li, R. Mukerji, D. Patton, N. Rau, D. Reppen, A. Schneider, M. Shahidehpour, and C. Singh, “The IEEE reliability test system-1996. A report prepared by the reliability test system task force of the application of probability methods subcommittee, ”IEEE Transactions on Power Systems, vol. 14, pp. 1010-1020, 1999.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top