跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/10 15:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭程輝
研究生(外文):Erwin-Erwin Erwin
論文名稱:H-型鋼梁之挫屈行為研究
論文名稱(外文):Experimental Study on Buckling Behavior of H-Shaped Steel Beam
指導教授:陳正誠陳正誠引用關係
指導教授(外文):Cheng-Cheng Chen
口試委員:陳正誠
口試日期:2011-07-25
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:營建工程系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:98
中文關鍵詞:lateral torsional bucklingcomposite beamlateral instabilitycontinuous torsional support
外文關鍵詞:lateral torsional bucklingcomposite beamlateral instabilitycontinuous torsional support
相關次數:
  • 被引用被引用:0
  • 點閱點閱:242
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
In seismic design of steel beam for building, lateral brace is a common lateral support device used nowadays to prevent the lateral torsional buckling. Lateral brace will restraint the lateral displacement at the bottom flange of H shaped beam. The lateral displacement of the top flange will be restrained by floor slab. But, the floor slab seems not only can restrain the lateral displacement but also can provide lateral torsional stiffness to the beam. In this test, one beam with lateral brace and three beams without lateral brace were tested. All of the beams have slab casted on them. Two special detailing were used for the beam without lateral brace to prevent the bottom flange deformation besides of lateral brace.
The test results show that, the slab can increase the ductility of the steel beam compare to the beam without slab (ABRI report). The beam can exhibit a very good ductility although lateral brace is not provided when the slab is in presence. The local buckling and lateral torsional buckling are concentrated at the reduced section region when slab is in presence.
In seismic design of steel beam for building, lateral brace is a common lateral support device used nowadays to prevent the lateral torsional buckling. Lateral brace will restraint the lateral displacement at the bottom flange of H shaped beam. The lateral displacement of the top flange will be restrained by floor slab. But, the floor slab seems not only can restrain the lateral displacement but also can provide lateral torsional stiffness to the beam. In this test, one beam with lateral brace and three beams without lateral brace were tested. All of the beams have slab casted on them. Two special detailing were used for the beam without lateral brace to prevent the bottom flange deformation besides of lateral brace.
The test results show that, the slab can increase the ductility of the steel beam compare to the beam without slab (ABRI report). The beam can exhibit a very good ductility although lateral brace is not provided when the slab is in presence. The local buckling and lateral torsional buckling are concentrated at the reduced section region when slab is in presence.
Acknowledgment i
Abstract ii
Table of Content iii
List of Table v
List of Figures vi
Notations ix
Chapter 1 : INTRODUCTION 1
1.1. Foreword 1
1.2. Background 1
1.3. Motivation of Research 4
1.4. Objective and Scopes 4
1.5. Outline 5
Chapter 2 : LITERATURE REVIEW 7
2.1. Foreword 7
2.2. Critical Moment of H Section Beam Under Uniformly Distributed
Moment 7
2.3. Verification of Beam Moment Capacity 10
2.4. Brace Requirement 13
2.5. Un-braced Length Requirement for Seismic Design 14
Chapter 3 : EXPERIMENTAL PROGRAM 15
3.1. Design Concept of The Specimens 15
3.2. Specimens Matrix 16
3.3. Fabrication Details of Specimens 17
3.3.1. Material Properties 17
3.3.2. Fabrication of Steel Beams 17
3.3.3. Fabrication of Slabs 18
3.4. Experimental Test Setup and Instrumentations 19
3.5. Testing Procedures 20
Chapter 4 : TEST RESULTS AND DISCUSSION 21
4.1. General Behavior 21
4.2. Evaluation of Test Results 25
4.3. Failure Mode Summaries 26
4.4. Opening Between Slab and Steel Beam 28
4.5. Energy Dissipation 29
Chapter 5 : CONCLUSION AND SUGGESTION 31
5.1. Conclusions 31
5.2. Suggestions 32
References 33
[1]American Institute of Steel Construction (AISC) (2010), “Specification for structural steel buildings.” Chicago.
[2]American Institute of Steel Construction (AISC) (2005), “Seismic provisions for structural steel buildings.” Chicago.
[3]Bradford, M. A. (1998). “Inelastic buckling of I-beams eith continuous elastic tension flange restraint.” Journal of Constructional Steel Research, 48, 63-77.
[4]Chen, W. F., Lui, E. M. (1986). “Structural stability, Theory and implementation.” New York: Elsevier.
[5]Jones, S. L., Fry, G. T., Engelhardt, M. D. (2002). “ Experimental evaluation of cyclically loaded reduced beam section moment connections.” Journal of Structural Engineering, 128(4), 441-451.
[6]Larue, B., Khelil. Gueury, M. (2007). “Evaluation of the lateral-torsional buckling of an I beam section continuously restrained along a flange by studying the buckling of an isolated equivalent profile.” Thin-Walled Structures, 45, 77-95.
[7]Li, F. X., Kanao, I., Li, J., Morisako, K. (2009). “ Local buckling of RBS beams subjected to cyclic loading.” Journal of Structural Engineering, 135(12), 1491-1498.
[8]Lindner, J. (2000). “Stability of structural members : General reports.” Journal of Constructional Steel Research, 55, 29-44.
[9]Nakashima, M., Kanao, I., Liu, D. (2002). “Lateral instability and lateral bracing of steel beams subjected to cyclic loading.” Journal of Structural Engineering, 128(10), 1308-1316.

[10]Nakashima, M., Matsumiya, T., Suita, K., Zhou, F. (2007). “Full-scale test of composite frame under large cyclic loading.” Journal of Structural Engineering, 297(2), 297-304.
[11]Nguyen, C. T., Moon, J., Le, V. N., Lee H. F. (2010). “Lateral-torsional buckling of I-girders with discrete torsional bracings.” Journal of Constructional Steel Research, 66, 170-177.
[12]Okazaki, T., Liu D., Nakashima, M., Engelhardt, M. D. (2006). “Stability requirements for beams in seismic steel moment frames.” Journal of Structural Engineering, 132(9), 1334-1342.
[13]Park, J. S., Stallings, J. M., Kang, Y. J. (2004). “Lateral-torsional buckling of prismatic beams with continuous top-flange bracing.” Journal of Structural Engineering, 60, 147-160.
[14]Ramli (2009). “Buckling behavior of H-beams braced by torsional braces” National Taiwan University of Science and Technology Master Thesis.
[15]Trahair, N. S. (1996). “Laterally unsupported beams.” Engineering Structures, Vol.18, No.10, 759-768.
[16]Vrcelj, Z., Bradford M. A. (2009). “Inelastic restrained distorsional buckling of continuous composite T-beams.” Journal of Constructional Steel Research, 65, 850-859.
[17]Wang, L., Helwig, T. A. (2005). “Critical imperfections for beam bracing systems.” Journal of Structural Engineering, 131(6), 933-940.
[18]Yura, J. A. (2001). “Fundamental of beam bracing.” Eng. J., American Institute of Steel Construction, 1st Quarter, 11-26.
[19]陳生金 (2005). “鋼結構設計-極限設計法與容許應力法.” 科技圖書.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top