跳到主要內容

臺灣博碩士論文加值系統

(44.222.218.145) 您好!臺灣時間:2024/02/29 17:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳詠超
研究生(外文):Yung-Chao Chen
論文名稱:製備聚乙烯-乙烯醇/磁性複合微粒之分子模版應用於澱粉酶催化
論文名稱(外文):Synthesis of Amylase-imprinted poly(ethylene-co-vinyl alcohol) magnetic composited nanoparticles for the applications of hydrolysis
指導教授:林宏殷
指導教授(外文):Hung-Yin Lin
學位類別:碩士
校院名稱:國立高雄大學
系所名稱:化學工程及材料工程學系碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:85
中文關鍵詞:聚乙烯-乙烯醇澱粉酶分子拓印磁性奈米複合粒子
外文關鍵詞:Molecularly imprintingamylasepoly(ethylene-co-vinyl alcohol)magnetic nanoparticleshydrolysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:238
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
MIPs近年來時常用於辨識元素的應用上,或是具有良好的控制性的對小分毒害物質的傳輸,將MIPs 用於活性酵素固定或束縛裡,在研究上是缺乏且重要,因此在本次的研究中辨識酵素Amylase拓印磁性MIPs是將Amylase充分溶解於不同乙烯莫耳比的聚乙烯-乙烯醇中,且經由相轉換而成。
藉由DLS、BET、SQUID、XRD可測得粒徑分佈、比表面積、磁化量、晶體結構組成,所以可知固定化模版的特性,然而固定化酵素活性是藉由對於不同成分比例的MIP(有重量百分比、或莫耳比),且在不同溫度下來量測澱粉水解葡萄糖產物。
澱粉酶拓印聚乙烯-乙烯醇磁性複合微粒在600C下澱粉水解可以重複60次。
Molecularly imprinted polymers (MIPs) have frequently been employed as recognition elements in sensing applications, or for the controlled delivery of small molecule drugs. An equally important but less well stuied application is the use of MIPs in the binding and immobilization of active enzymes. In this study, magnetic MIPs (MMIPs) recognizing the enzyme amylase were prepared using phase inversion of poly(ethylene-co-vinyl alcohol) (EVAL) solutions with various ethylene mole ratios in the presence of amylase. The size distribution,specific surface area, magnetization, and composition were characterized by dynamic light scattering, Brunauer-Emmett-Teller (BET) analysis, superconducting quantum interference devices, and X-ray diffraction, respectively. The activities of both bound template and rebound enzyme was established by measuring glucose production via starch hydrolysis,at different temperature, for MIPs with different compositions (weight % of EVALs and mole % of ethylene ).Finally, the reusability of magnetic amylase-imprinted EVAL nanoparticles was examined and starch hydrolysis for 60 times at 60oC.
目錄 I
表目錄 V
圖目錄 V
摘要 1
ABSTRACT 2
第一章 前言 3
1.1論文概論 4
第二章 文獻回顧 5
2.1分子模板 5
2.1.1分子模版的起源與發展 5
2.1.2分子模板之原理 6
2.1.3分子模板對目標物之辨識因素 8
2.1.4分子模板鍵結的物理觀念和其特性 10
2.1.5分子模板合成 11
2.1.6分子模版之應用 13
2.2 乙烯–乙烯醇共聚合物 (Poly(ethylene-co-vinyl alcohol), EVAL) 16
2.2.1 乙烯–乙烯醇共聚合物之結構與原理 17
2.2.2相轉換理論與機制 18
2.2.3乙烯-乙烯醇共聚合物之生物相容性及其應用 21
2.3 澱粉簡介 22
2.3.1澱粉酶 22
2.3.2澱粉 24
2.4氧化鐵與四氧化三鐵 26
2.4.1超順磁性 (Superparamagnetism) 27
2.4.2磁性奈米粒子的特性 27
2.4.3磁性奈米粒子之應用 28
2.5 酵素固定化 29
2.5.1酵素固定化發展史 30
2.5.2固定化酵素之種類及方法 31
2.5.3固定化對於酵素之穩定性 33
2.5.4 磁性載體固定化技術 34
第三章 實驗樣品與步驟 36
3.1實驗樣品與儀器 36
3.1.1實驗藥品 36
3.1.2實驗儀器 37
3.1.3紫外光-可見光吸收光譜儀(UV-Vis Spectrometer) 38
3.1.4掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) 39
3.1.5原子力顯微鏡(AFM) 41
3.1.6 X光繞射儀: 44
3.1.7 超導量子干涉磁量儀(SQUID Magnetometer) 45
3.1.8動態光散射粒徑分析儀 47
3.2實驗方法與步驟 50
3.2.1磁性奈米粒子製作 50
3.2.2磁性奈米粒子的修飾 50
3.2.3分子拓印高分子包覆磁性奈米粒子 51
3.2.4清洗分子拓印高分子包覆磁性奈米粒子 51
3.2.5澱粉酶拓印高分子磁性奈米複合微粒水解澱粉反應 52
3.2.6再吸附實驗步驟 52
3.2.7澱粉酶拓印磁性奈米複合微粒再吸附性與量測 52
第四章 實驗結果與討論 55
4.1 分子拓印磁性奈米複合微粒對於目標分子的吸附實驗 55
4.1.1 含有不同乙烯比例的拓印微粒對於目標分子之吸附性 55
4.2 分子拓印微粒性質研究 56
4.2.1磁性複合微粒之晶格結構分析 56
4.2.2磁性奈米複合微粒之表面微型貌分析 58
4.2.3磁性複合微粒之比表面積分析 59
4.2.4磁性奈米複合微粒之磁化量量測 62
4.3磁性奈米複合微粒的粒徑分佈之量測 63
4.3.1分子拓印高分子不同EVAL mole%磁性奈米複合微粒奈米粒徑分佈 63
4.3.2不同分子濃度拓印高分子磁性奈米複合微粒粒徑分佈 64
4.4 葡萄糖產率量測 65
4.4.1不同乙烯比例高分子磁性複合微粒與澱粉反應產率 65
4.4.2不同重量百分比高分子磁性複合微粒與澱粉反應產率 66
4.4.3拓印不同分子濃度磁性奈米覆合微粒與澱粉反應產率 67
4.4.4高分子磁性複合微粒與不同濃度澱粉反應產率 68
4.4.5不同溫度下產率 69
4.4.6不同反應時間下產率 71
4.4.7可重複使用性 72
第五章結論 73
[1]Mosbach, K. and O. Ramstrom, The Emerging Technique of Molecular Imprinting and Its Future Impact on Biotechnology. Nat Biotech, 1996. 14(2): p. 163-170.
[2]Pauling, L., A Theory of the Structure and Process of Formation of Antibodies*. Journal of the American Chemical Society, 1940. 62(10): p. 2643-2657.
[3]Lemieux, R.U. and U. Spohr, How Emil Fischer Was Led To The Lock and Key Concept for Enzyme Specificity, in Advances in Carbohydrate Chemistry and Biochemistry, H. Derek, Editor. 1994, Academic Press. p. 1-20.
[4]Andersson, L., B. Sellergren, and K. Mosbach, Imprinting of amino acid derivatives in macroporous polymers. Tetrahedron Letters, 1984. 25(45): p. 5211-5214.
[5]Lee, M.-H., et al., Recognition of creatinine by poly(ethylene-co-vinylalcohol) molecular imprinting membrane. Desalination, 2008. 234(1-3): p. 126-133.
[6]Lin, H.-Y., et al., The microcontact imprinting of proteins: The effect of cross-linking monomers for lysozyme, ribonuclease A and myoglobin. Biosensors and Bioelectronics, 2006. 22(4): p. 534-543.
[7]Bossi, A., et al., Molecularly imprinted polymers for the recognition of proteins: The state of the art. Biosensors and Bioelectronics, 2007. 22(6): p. 1131-1137.
[8]Alexander, C., et al., Molecular imprinting science and technology: a survey of the literature for the years up to and including 2003. Journal of molecular recognition : JMR, 2006. 19(2): p. 106-80.
[9]Matsunaga, T., T. Hishiya, and T. Takeuchi, Surface plasmon resonance sensor for lysozyme based on molecularly imprinted thin films. Analytica Chimica Acta, 2007. 591(1): p. 63-67.
[10]Ou, S.H., et al., Polyacrylamide gels with electrostatic functional groups for the molecular imprinting of lysozyme. Analytica Chimica Acta, 2004. 504(1): p. 163-166.
[11]Bereli, N., et al., Protein recognition via ion-coordinated molecularly imprinted supermacroporous cryogels. Journal of Chromatography A, 2008. 1190(1-2): p. 18-26.
[12]Booker, K., et al., Efficient preparation and improved sensitivity of molecularly imprinted polymers using room temperature ionic liquids. Chemical Communications, 2006(16): p. 1730-1732.
[13]Tõugu, V. and T. Kesvatera, Comparison of salt effects on the reactions of acetylcholinesterase with cationic and anionic inhibitors. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, 2001. 1544(1-2): p. 189-195.
[14]Chou, P.-C., J. Rick, and T.-C. Chou, C-reactive protein thin-film molecularly imprinted polymers formed using a micro-contact approach. Analytica Chimica Acta, 2005. 542(1): p. 20-25.
[15]Hsieh, R.-Y., H.-A. Tsai, and M.-J. Syu, Designing a molecularly imprinted polymer as an artificial receptor for the specific recognition of creatinine in serums. Biomaterials, 2006. 27(9): p. 2083-2089.
[16]Hsu, C.-Y., et al., Incorporation of styrene enhances recognition of ribonuclease A by molecularly imprinted polymers. Biosensors and Bioelectronics, 2006. 22(3): p. 355-363.
[17]Caro, E., et al., Application of molecularly imprinted polymers to solid-phase extraction of compounds from environmental and biological samples. TrAC Trends in Analytical Chemistry, 2006. 25(2): p. 143-154.
[18]Augusto, F., et al., New sorbents for extraction and microextraction techniques. Journal of Chromatography A, 2010. 1217(16): p. 2533-2542.
[19]Xie, J., et al., Direct extraction of specific pharmacophoric flavonoids from gingko leaves using a molecularly imprinted polymer for quercetin. Journal of Chromatography A, 2001. 934(1-2): p. 1-11.
[20]Cunliffe, D., A. Kirby, and C. Alexander, Molecularly imprinted drug delivery systems. Advanced Drug Delivery Reviews, 2005. 57(12): p. 1836-1853.
[21]Uzun, L., et al., Hepatitis B surface antibody purification with hepatitis B surface antibody imprinted poly(hydroxyethyl methacrylate-N-methacryloyl-l-tyrosine methyl ester) particles. Journal of Chromatography B, 2009. 877(3): p. 181-188.
[22]Baydemir, G., et al., Bilirubin recognition via molecularly imprinted supermacroporous cryogels. Colloids and Surfaces B: Biointerfaces, 2009. 68(1): p. 33-38.
[23]Diltemiz, S.E., et al., Quantum dot nanocrystals having guanosine imprinted nanoshell for DNA recognition. Talanta, 2008. 75(4): p. 890-896.
[24]Khorrami, A.R. and S. Mehrseresht, Synthesis and evaluation of a selective molecularly imprinted polymer for the contraceptive drug levonorgestrel. Journal of Chromatography B, 2008. 867(2): p. 264-269.
[25]Lin, T.-Y., C.-H. Hu, and T.-C. Chou, Determination of albumin concentration by MIP-QCM sensor. Biosensors and Bioelectronics, 2004. 20(1): p. 75-81.
[26]Cheng, L.-P., et al., Solute rejection of dextran by EVAL membranes with asymmetric and particulate morphologies. Polymer, 1998. 39(11): p. 2135-2142.
[27]Cheng, L.-P., Y.-S. Huang, and T.-H. Young, Effect of the temperature of polyurethane dissolution on the mechanism of wet-casting membrane formation. European Polymer Journal, 2003. 39(3): p. 601-607.
[28]Young, T.-H., J.-H. Huang, and W.-Y. Chuang, Effect of evaporation temperature on the formation of particulate membranes from crystalline polymers by dry-cast process. European Polymer Journal, 2002. 38(1): p. 63-72.
[29]Young, T.-H., et al., The effect of the second phase inversion on microstructures in phase inversion EVAL membranes. Journal of Membrane Science, 1998. 146(2): p. 169-178.
[30]Young, T.-H., et al., Prediction of EVAL membrane morphologies using the phase diagram of water-DMSO-EVAL at different temperatures. Polymer, 1999. 40(9): p. 2189-2195.
[31]Young, T.-H. and L.-W. Chen, A diffusion-controlled model for wet-casting membrane formation. Journal of Membrane Science, 1991. 59(2): p. 169-181.
[32]Shun, C.-T. and T.-H. Young, The effect of surface properties of EVAL membranes on the inflammatory response. Materials Science and Engineering: C, 2000. 13(1-2): p. 75-83.
[33]Young, T.-H., et al., Investigation of the drug distribution and release characteristics from particulate membranes. Journal of Membrane Science, 2001. 191(1-2): p. 199-205.
[34]Luo, R.-L., T.-H. Young, and Y.-M. Sun, Structure formation and characterization of EVAL membranes with cosolvent of isopropanol and water. Polymer, 2003. 44(1): p. 157-166.
[35]Lin, D.-T., T.-H. Young, and Y. Fang, Studies on the effect of surface properties on the biocompatibility of polyurethane membranes. Biomaterials, 2001. 22(12): p. 1521-1529.
[36]Young, T.-H., et al., Preparation of EVAL membranes with smooth and particulate morphologies for neuronal culture. Biomaterials, 2001. 22(13): p. 1771-1777.
[37]Lai, P.-S., et al., A pH-sensitive EVAL membrane by blending with PAA. Journal of Membrane Science, 2006. 275(1-2): p. 89-96.
[38]Young, T.-H., et al., Self-assembly of dermal papilla cells into inductive spheroidal microtissues on poly(ethylene-co-vinyl alcohol) membranes for hair follicle regeneration. Biomaterials, 2008. 29(26): p. 3521-3530.
[39]Huang, C.-Y., et al., Urinalysis with molecularly imprinted poly(ethylene-co-vinyl alcohol) potentiostat sensors. Biosensors and Bioelectronics, 2009. 24(8): p. 2611-2617.
[40]Lin, H.-Y., M.-S. Ho, and M.-H. Lee, Instant formation of molecularly imprinted poly(ethylene-co-vinyl alcohol)/quantum dot composite nanoparticles and their use in one-pot urinalysis. Biosensors and Bioelectronics, 2009. 25(3): p. 579-586.
[41]Buléon, A., et al., Starch granules: structure and biosynthesis. International Journal of Biological Macromolecules, 1998. 23(2): p. 85-112.
[42]Blazek, J. and E.P. Gilbert, Application of small-angle X-ray and neutron scattering techniques to the characterisation of starch structure: A review. Carbohydrate Polymers, 2011. 85(2): p. 281-293.
[43]Uhlich, T., M. Ulbricht, and G. Tomaschewski, Immobilization of enzymes in photochemically cross-linked polyvinyl alcohol. Enzyme and Microbial Technology, 1996. 19(2): p. 124-131.
[44]Krajewska, B., Application of chitin- and chitosan-based materials for enzyme immobilizations: a review. Enzyme and Microbial Technology, 2004. 35(2-3): p. 126-139.
[45]Ghassabian, S., et al., Dexamethasone-loaded magnetic albumin microspheres: Preparation and in vitro release. International Journal of Pharmaceutics, 1996. 130(1): p. 49-55.
[46]West, J.L. and N.J. Halas, Applications of nanotechnology to biotechnology: Commentary. Current Opinion in Biotechnology, 2000. 11(2): p. 215-217.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top