跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/11 07:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃柏翔
研究生(外文):Po-Hsiang Huang
論文名稱:美麗海葵 HRS 蛋白在胞內共生所扮演的角色之研究
論文名稱(外文):Involvement of ApHRS in Aiptasia-symbiodinium endosymbiosis
指導教授:陳鳴泉黃永森黃永森引用關係
指導教授(外文):Ming-Chyuan ChenYung-Sen Huang
學位類別:碩士
校院名稱:國立高雄大學
系所名稱:生物科技研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:100
中文關鍵詞:胞內共生共生小體自噬小體成熟化HRSLC3
外文關鍵詞:EndosymbiosisSymbiosomeautophagosome maturationHRSLC3
相關次數:
  • 被引用被引用:1
  • 點閱點閱:211
  • 評分評分:
  • 下載下載:28
  • 收藏至我的研究室書目清單書目收藏:0
海洋刺胞動物與胞內共生之渦鞭毛藻建立出豐腴和多樣性的珊瑚礁生態系。然而,我們對於此共生關係及參與其中的分子機制卻不是很清楚。文獻指出,哺乳類HRS (hepatocyte growth factor-regulated tyrosine kinase substrate) 參與了細胞內蛋白質運輸的調控,並且可能參與了自噬小體成熟化 (autophagosome maturation) 的過程。本研究因此希望探討 HRS蛋白在海洋刺胞動物與渦鞭毛藻胞內共生參與的情形。免疫螢光染色分析的結果顯示,大多數美麗海葵宿主細胞內的共生小體含有ApHRS免疫螢光訊號。以DCMU ( 3- ( 3,4-dichlorophenyl ) -1,1-dimethylurea ) 光合作用抑制劑處理海葵,導致ApHRS + 共生小體的比例大幅減少。吞噬作用 (phagocytosis test) 結果顯示,包著酵母菌的胞噬小體 (phagosome) 上帶有ApHRS免疫螢光訊號,而餵食120分鐘之後的胞噬小體,此比例高於餵食60分鐘之後的。進一步選殖了美麗海葵同源性蛋白LC3 (microtubule-associated protein 1 light chain 3,自噬小體標記蛋白)。在胺基酸序列上,ApLC3與人類LC3有72 %的相似性。二重免疫染色實驗發現,ApHRS和ApLC3常同時座落在相同的共生小體微膜區 (symbiosome membrane microdomains) 上。根據以上實驗結果,ApHRS和ApLC3很可能參與美麗海葵和共生藻所建立胞內共生的調控。
The intracellular association of symbiotic dinoflagellates (zooxanthellae) with marine cnidarians is the foundation of the highly productive and diversified coral reef ecosystems. However, the responsible molecular mechanism for its establishment and maintenance is still poorly known. Literature shows that HRS regulates intracellular protein sorting and may play an important role in autophagosomal maturation. The current study aimed to investigate the role of HRS protein in the endosymbiosis between the sea anemone Aiptasia pulchella and zooxanthellae. Immunostaining analysis showed that ApHRS immunoreactivities were associated with the majority of symbiosomes. DCMU treatment of the sea anemone resulted in great reduction in the percentage of ApHRS + symbiosomes within 30 min. However, this percentage rose again when DCMU treatment was prolonged to 120 min. Phagocytosis assay showed that phagosomes containing yeasts were highly decorated with ApHRS-positive immunosignals, with higher preference toward the 120 minutes-old phagosomes than 60 minutes-old phagosomes. A partial cDNA for ApLC3 protein, the sea anemone homologue of LC3 proteins, which is 72 % identical to human LC3 protein, was cloned and employed as an autophagosome marker. Double immunostaining showed that ApLC3 was located to ApHRS-positive symbiosome membrane. Overall, the present study supported that ApHRS is involved in the regulation of Aiptaisia-microalgal endosymbiosis.
目錄.......................................................I
圖目錄............. .......................................IV
附錄目錄...................................................VI
中文摘要....................................................1
英文摘要....................................................3
第一章、 前言...............................................5
1.1光合胞內共生的定義…........................................5
1.1.1 光合胞內共生普遍發生於海洋生物中...........................5
1.1.2 光合胞內共生對珊瑚礁生態系的重要性.........................6
1.1.3光合胞內共生對珊瑚宿主的利益...............................6
1.1.4 光合胞內共生對共生藻的利益...............................6
1.2 光合胞內共生的建立........................................7
1.2.1 胞內微生物的生存機制....................................8
1.2.2 光合胞內共生的維持......................................9
1.2.3 光合胞內共生之共生藻的生長與增殖..........................11
1.3 光合胞內共生崩解的因素....................................11
1.3.1 光合胞內共生崩解的機制..................................12
1.4 光合胞內共生之共生藻生存機制...............................13
1.4.1 胞噬小體和共生小體之間的差異.............................14
1.5 海洋刺胞動物降解共生藻的過程...............................15
1.5.1 走往胞噬小體的降解機制..................................15
1.5.2走往自噬小體的降解機制...................................16
1.6 自體吞噬...............................................17
1.6.1自體吞噬中參與的蛋白質和機制..............................17
1.7 HRS在自體吞噬中的角色....................................18
實驗目的...................................................20
第二章、 材料與方法.........................................21
2.1 動物培養.............................................. 21
2.2 ApLC3 cDNA部分片段的選殖與序列分析........................21
2.3 ApLC3 重組蛋白的建構....................................23
2.3.1 ApLC3 重組蛋白的表現與純化.............................25
2.4 蛋白質定量............................................ 26
2.4.1十二烷基硫酸鈉聚丙烯醯胺凝膠電泳..........................27
2.4.2西方點墨法............................................29
2.5免疫螢光染色.............................................31
2.5.1 玻片製備.............................................31
2.5.2 酸固定液的製備........................................32
2.6 DCMU處理作用...........................................32
2.7 吞噬作用...............................................32
2.8 移除酵母菌反應性抗體之酵母菌餵食實驗........................33
2.9 二重染色...............................................33
2.10 以biotin標定海葵內胚層細胞表面...........................34
第三章、結果...............................................36
3.1 Anti-ApHRS抗體的專一性測試(Western blot analysis)........36
3.1.1海葵細胞的免疫螢光染色(共生小體染上的百分比)................36
3.1.2海葵細胞的免疫螢光染色(DCMU處理的結果)....................37
3.2 ApHRS的二重染色分析.....................................38
3.2.1以biotin標定海葵內胚層細胞表面的實驗分析..................39
3.2.2 ApHRS出現在不同時期的yeast-containing phagosomes的比例.......................................................40
3.3 ApLC3的分子選殖.......................................42
3.4 ApLC3 重組蛋白的西方點墨法..............................43
3.5 ApHRS 與ApLC3的共分佈分析..............................44
第四章、討論...............................................45
4.1美麗海葵ApHRS在海葵細胞分佈的情形..........................45
4.2 DCMU藥劑破壞美麗海葵與共生藻的共生關係......................46
4.3 ApHRS蛋白與胞噬作用的關係................................46
4.4 ApHRS的免疫訊號與biotin-labeled endocytic vesicles關係.......................................................47
4.5使用二重免疫螢光染色來得知ApHRS可能扮演的角色................48
4.6 總結.................................................49
第五章、圖表...............................................50
第六章、參考文獻............................................74
附錄......................................................88
圖1. ApHRS的部分cDNA序列和預測的胺基酸序列........................................................50
圖2. 藉由西方點墨法來分析ApHRS於美麗海葵蛋白質樣品的表現情形........................................................52
圖3. 美麗海葵HRS蛋白(ApHRS)胞內分佈的免疫螢光染色分析........................................................53
圖4. DCMU處理與共生小體染上ApHRS免疫螢光訊號的比例分析........................................................54
圖5.以二重免疫螢光染色法分析美麗海葵宿主細胞內的ApHRS和ApRab5分佈情形........................................................55
圖6. 藉由二重免疫螢光染色法來分析美麗海葵宿主細胞內的ApHRS和ApRab7分佈情形......................................................56
圖7. 藉由二重免疫螢光染色法來分析美麗海葵宿主細胞內的ApHRS和Ub-proteins分佈情形...........................................57
圖8. 藉由二重免疫螢光染色法來分析美麗海葵宿主細胞內的ApHRS和ApRab3分佈情形......................................................58
圖9. 藉由cell surface-bound biotin螢光染色法來分析美麗海葵宿主細胞內的biotin-avidin所標定蛋白質和ApRab5分佈情形.....................................................60
圖10. 藉由cell surface-bound biotin螢光染色法來分析美麗海葵宿主細胞內的biotin-avidin所標定蛋白質和ApRab4分佈情形........................................................62
圖11. 藉由cell surface-bound biotin螢光染色法來分析美麗海葵宿主細胞內的biotin-avidin所標定蛋白質和ApHRS分佈情形.......................................................63
圖12. 藉由酵母菌餵食實驗之免疫螢光染色法來觀察美麗海葵細胞內生性ApHRS分佈情形...................................................65
圖13. 利用酵母菌餵食來執行吞噬作用經由免疫螢光染色法來觀察美麗海葵細胞內生性的ApHRS,在消化細胞內包著酵母菌的胞噬小體膜上分佈趨勢圖表.......................................................67
圖14. 從美麗海葵cDNA library選殖出來的部分LC3序列之PCR產物.......................................................68
圖15. 美麗海葵與其他物種的LC3蛋白之多重序列比對親源分析圖.......................................................69
圖16. ApLC3 樹狀親源關係圖......................................................70
圖17. 藉由西方點墨法來分析ApLC3於美麗海葵蛋白質樣品的表現情形.......................................................71
圖18. 以二重免疫螢光染色法分析美麗海葵宿主細胞內的ApHRS和ApLC3分佈情形.......................................................72
附錄一、藥劑之廠牌和貨號.....................................88
附錄二、pCR-TOPO 2.1 載體示意圖..............................90
附錄三、pET100/D-TOPO載體示意圖..............................91
附錄四、Rab蛋白於細胞內的路徑圖................................92
Amer, A.O. and Swanson, M.S., (2002) A phagosome of one's own: a microbial guide to life in the macrophage. Current opinion in microbiology. 5, 56-61.
Asao, H., Sasaki, Y., Arita, T., Tanaka, N., Endo, K., Kasai, H., Takeshita, T., Endo, Y., Fujita, T. and Sugamura, K., (1997) Hrs is associated with STAM, a signal-transducing adaptor molecule. Journal of Biological Chemistry. 272, 32785.
Bache, K.G., Raiborg, C., Mehlum, A., Madshus, I.H. and Stenmark, H., (2002) Phosphorylation of Hrs downstream of the epidermal growth factor receptor. European Journal of Biochemistry. 269, 3881-3887.
Baker, A.C., (2003) Flexibility and specificity in coral-algal symbiosis: diversity, ecology, and biogeography of Symbiodinium. Annual Review of Ecology, Evolution, and Systematics, 661-689.
Baker, A.C. and Romanski, A.M., (2007) Multiple symbiotic partnerships are common in scleractinian corals, but not in octocorals: Comment on Goulet (2006). Marine ecology progress series. 335, 237-242.
Banin, E., Khare, S.K., Naider, F. and Rosenberg, E., (2001) Proline-rich peptide from the coral pathogen Vibrio shiloi that inhibits photosynthesis of zooxanthellae. Applied and environmental microbiology. 67, 1536.
Boya, P., Gonzalez-Polo, R.A., Casares, N., Perfettini, J.L., Dessen, P., Larochette, N., Metivier, D., Meley, D., Souquere, S. and Yoshimori, T., (2005) Inhibition of macroautophagy triggers apoptosis. Molecular and cellular biology. 25, 1025.
Brumell, J.H., Tang, P., Mills, S.D. and Finlay, B.B., (2001) Characterization of Salmonella Induced Filaments (Sifs) Reveals a Delayed Interaction Between Salmonella Containing Vacuoles and Late Endocytic Compartments. Traffic. 2, 643-653.
Buchmeier, N.A. and Heffron, F., (1991) Inhibition of macrophage phagosome-lysosome fusion by Salmonella typhimurium. Infection and immunity. 59, 2232.
Buddemeier, R.W. and Fautin, D.G., (1993) Coral bleaching as an adaptive mechanism. Bioscience. 43, 320-326.
Cecile, S., Philippe, G., Emeline, D., Denis, A. and Paola, F., (2009) Comprehensive EST analysis of the symbiotic sea anemone, Anemonia viridis. BMC Genomics. 10.
Chen, M.C., Cheng, Y.M., Hong, M.C. and Fang, L.S., (2004) Molecular cloning of Rab5 (ApRab5) in Aiptasia pulchella and its retention in phagosomes harboring live zooxanthellae. Biochemical and biophysical research communications. 324, 1024-1033.
Chen, M.C., Cheng, Y.M., Sung, P.J., Kuo, C.E. and Fang, L.S., (2003) Molecular identification of Rab7 (ApRab7) in Aiptasia pulchella and its exclusion from phagosomes harboring zooxanthellae* 1. Biochemical and biophysical research communications. 308, 586-595.
Chen, M.C., Hong, M.C., Huang, Y.S., Liu, M.C., Cheng, Y.M. and Fang, L.S., (2005) ApRab11, a cnidarian homologue of the recycling regulatory protein Rab11, is involved in the establishment and maintenance of the Aiptasia-Symbiodinium endosymbiosis. Biochemical and biophysical research communications. 338, 1607-1616.
Coffroth, M.A., (2005) Genetic diversity of symbiotic dinoflagellates in the genus Symbiodinium. Protist. 156, 19-34.
Cook, C., D'Elia, C. and Muller-Parker, G., (1988) Host feeding and nutrient sufficiency for zooxanthellae in the sea anemone Aiptasia pallida. Marine Biology. 98, 253-262.
Cuervo, A.M., (2004) Autophagy: many paths to the same end. Molecular and cellular biochemistry. 263, 55-72.
Deretic, V., (2008). Autophagosome and phagosome: Springer.
Desjardins, M. and Griffiths, G., (2003) Phagocytosis: latex leads the way. Current opinion in cell biology. 15, 498-503.
Douglas, A., (2003) Coral bleaching--how and why? Marine Pollution Bulletin. 46, 385-392.
Downs, C.A., Kramarsky-Winter, E., Martinez, J., Kushmaro, A., Woodley, C.M., Loya, Y. and Ostrander, G.K., (2009) Symbiophagy as a cellular mechanism for coral bleaching. Autophagy. 5, 211-216.
Dunn, S.R., Bythell, J.C., Le Tissier, M.D.A., Burnett, W.J. and Thomason, J.C., (2002) Programmed cell death and cell necrosis activity during hyperthermic stress-induced bleaching of the symbiotic sea anemone Aiptasia sp. Journal of Experimental Marine Biology and Ecology. 272, 29-53.
Fitt, W.K. and Trench, R.K., (1983) Endocytosis of the symbiotic dinoflagellate Symbiodinium microadriaticum Freudenthal by endodermal cells of the scyphistomae of Cassiopeia xamachana and resistance of the algae to host digestion. Journal of cell science. 64, 195.
Gates, R.D., Baghdasarian, G. and Muscatine, L., (1992) Temperature stress causes host cell detachment in symbiotic cnidarians: implications for coral bleaching. The Biological Bulletin. 182, 324.
Goulet, T.L., (2006) Most corals may not change their symbionts. Marine ecology progress series. 321, 1-7.
Gozuacik, D. and Kimchi, A., (2004) Autophagy as a cell death and tumor suppressor mechanism. Oncogene. 23, 2891-2906.
Gutierrez, M.G., Master, S.S., Singh, S.B., Taylor, G.A., Colombo, M.I. and Deretic, V., (2004) Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell. 119, 753-766.
Hashim, S., Mukherjee, K., Raje, M., Basu, S.K. and Mukhopadhyay, A., (2000) Live Salmonella modulate expression of Rab proteins to persist in a specialized compartment and escape transport to lysosomes. Journal of Biological Chemistry. 275, 16281.
Heinzen, R.A., Scidmore, M.A., Rockey, D.D. and Hackstadt, T., (1996) Differential interaction with endocytic and exocytic pathways distinguish parasitophorous vacuoles of Coxiella burnetii and Chlamydia trachomatis. Infection and immunity. 64, 796.
Hohman, T.C., McNEIL, P.L. and Muscatine, L., (1982) Phagosome-lysosome fusion inhibited by algal symbionts of Hydra viridis. The Journal of Cell Biology. 94, 56.
Hong, M.C., Huang, Y.S., Lin, W.W., Fang, L.S. and Chen, M.C., (2009a) ApRab3, a biosynthetic Rab protein, accumulates on the maturing phagosomes and symbiosomes in the tropical sea anemone, Aiptasia pulchella. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology. 152, 249-259.
Hong, M.C., Huang, Y.S., Song, P.C., Lin, W.W., Fang, L.S. and Chen, M.C., (2009b) Cloning and Characterization of ApRab4, a Recycling Rab Protein of Aiptasia pulchella, and Its Implication in the Symbiosome Biogenesis. Marine Biotechnology. 11, 771-785.
Houlbreque, F. and Ferrier Pages, C., (2009) Heterotrophy in tropical scleractinian corals. Biological Reviews. 84, 1-17.
Jones, R., Hoegh Guldberg, O., Larkum, A. and Schreiber, U., (1998) Temperature induced bleaching of corals begins with impairment of the CO2 fixation mechanism in zooxanthellae. Plant, Cell & Environment. 21, 1219-1230.
Kanazawa, C., Morita, E., Yamada, M., Ishii, N., Miura, S., Asao, H., Yoshimori, T. and Sugamura, K., (2003) Effects of deficiencies of STAMs and Hrs, mammalian class E Vps proteins, on receptor downregulation. Biochemical and biophysical research communications. 309, 848-856.
Klionsky, D.J., (2005) The molecular machinery of autophagy: unanswered questions. Journal of cell science. 118, 7.
Komada, M. and Kitamura, N., (1995) Growth factor-induced tyrosine phosphorylation of Hrs, a novel 115-kilodalton protein with a structurally conserved putative zinc finger domain. Molecular and cellular biology. 15, 6213.
Komada, M. and Kitamura, N., (2001) Hrs and hbp: possible regulators of endocytosis and exocytosis. Biochemical and biophysical research communications. 281, 1065-1069.
Komada, M., Masaki, R., Yamamoto, A. and Kitamura, N., (1997) Hrs, a tyrosine kinase substrate with a conserved double zinc finger domain, is localized to the cytoplasmic surface of early endosomes. Journal of Biological Chemistry. 272, 20538.
Koul, A., Herget, T., Klebl, B. and Ullrich, A., (2004) Interplay between mycobacteria and host signalling pathways. Nature Reviews Microbiology. 2, 189-202.
Levine, B., (2005) Eating Oneself and Uninvited Guests:: Autophagy-Related Pathways in Cellular Defense. Cell. 120, 159-162.
Levine, B. and Kroemer, G., (2008) Autophagy in the pathogenesis of disease. Cell. 132, 27-42.
Lin, K.L., Wang, J.T. and Fang, L.S., (2000) Participation of glycoproteins on zooxanthellal cell walls in the establishment of a symbiotic relationship with the sea anemone, Aiptasia pulchella. Zoological Studies. 39, 172-178.
Lloyd, T.E., Atkinson, R., Wu, M.N., Zhou, Y., Pennetta, G. and Bellen, H.J., (2002) Hrs regulates endosome membrane invagination and tyrosine kinase receptor signaling in Drosophila. Cell. 108, 261-269.
MacMicking, J.D., Taylor, G.A. and McKinney, J.D., (2003) Immune control of tuberculosis by IFN-γ-inducible LRG-47. Science. 302, 654.
Mellman, I., (1996) Endocytosis and molecular sorting. Annual review of cell and developmental biology. 12, 575-625.
Meresse, S., Steele-Mortimer, O., Finlay, B.B. and Gorvel, J.P., (1999a) The rab7 GTPase controls the maturation of Salmonella typhimurium-containing vacuoles in HeLa cells. The EMBO Journal. 18, 4394-4403.
Meresse, S., Steele-Mortimer, O., Moreno, E., Desjardins, M., Finlay, B. and Gorvel, J.P., (1999b) Controlling the maturation of pathogen-containing vacuoles: a matter of life and death. Nature Cell Biology. 1.
Mieog, J.C., van Oppen, M.J.H., Cantin, N.E., Stam, W.T. and Olsen, J.L., (2007) Real-time PCR reveals a high incidence of Symbiodinium clade D at low levels in four scleractinian corals across the Great Barrier Reef: implications for symbiont shuffling. Coral Reefs. 26, 449-457.
Mukherjee, K., Parashuraman, S., Krishnamurthy, G., Majumdar, J., Yadav, A., Kumar, R., Basu, S.K. and Mukhopadhyay, A., (2002) Diverting intracellular trafficking of Salmonella to the lysosome through activation of the late endocytic Rab7 by intracellular delivery of muramyl dipeptide. Journal of cell science. 115, 3693.
Mukherjee, S., Ghosh, R.N. and Maxfield, F.R., (1997) Endocytosis. Physiological Reviews. 77, 759.
Pipe, R. and Brown, B., (1993) Cellular and ultrastructural changes in the endoderm of the temperate sea anemone Anemonia viridis as a result of increased temperature. Marine Biology. 116, 311-318.
Piper, R.C., Cooper, A.A., Yang, H. and Stevens, T.H., (1995) VPS27 controls vacuolar and endocytic traffic through a prevacuolar compartment in Saccharomyces cerevisiae. The Journal of Cell Biology. 131, 603.
Raiborg, C., Bremnes, B., Mehlum, A., Gillooly, D.J., D’Arrigo, A., Stang, E. and Stenmark, H., (2001) FYVE and coiled-coil domains determine the specific localisation of Hrs to early endosomes. Journal of cell science. 114, 2255.
Raiborg, C. and Stenmark, H., (2002) Hrs and endocytic sorting of ubiquitinated membrane proteins. Cell structure and function. 27, 403-408.
Roberts, R., Barbieri, M., Pryse, K., Chua, M., Morisaki, J. and Stahl, P., (1999) Endosome fusion in living cells overexpressing GFP-rab5. Journal of cell science. 112, 3667.
Rosenberg, E., Kushmaro, A., Kramarsky-Winter, E., Banin, E. and Yossi, L., (2008) The role of microorganisms in coral bleaching. The ISME Journal. 3, 139-146.
Roudier, N., Lefebvre, C. and Legouis, R., (2005) CeVPS 27 is an Endosomal Protein Required for the Molting and the Endocytic Trafficking of the Low Density Lipoprotein Receptor Related Protein 1 in Caenorhabditis elegans. Traffic. 6, 695-705.
Sawyer, S.J. and Muscatine, L., (2001) Cellular mechanisms underlying temperature-induced bleaching in the tropical sea anemone Aiptasia pulchella. Journal of experimental biology. 204, 3443.
Schaible, U.E., Sturgill-Koszycki, S., Schlesinger, P.H. and Russell, D.G., (1998) Cytokine activation leads to acidification and increases maturation of Mycobacterium avium-containing phagosomes in murine macrophages. The Journal of Immunology. 160, 1290.
Scott, C., Botelho, R. and Grinstein, S., (2003) Phagosome maturation: a few bugs in the system. Journal of Membrane Biology. 193, 137-152.
Simonsen, A., Birkeland, H.C.G., Gillooly, D.J., Mizushima, N., Kuma, A., Yoshimori, T., Slagsvold, T., Brech, A. and Stenmark, H., (2004) Alfy, a novel FYVE-domain-containing protein associated with protein granules and autophagic membranes. Journal of cell science. 117, 4239.
Simonsen, A., Wurmser, A.E., Emr, S.D. and Stenmark, H., (2001) The role of phosphoinositides in membrane transport. Current opinion in cell biology. 13, 485-492.
Stat, M., Morris, E. and Gates, R.D., (2008) Functional diversity in coral–dinoflagellate symbiosis. Proceedings of the National Academy of Sciences. 105, 9256.
Steen, R.G. and Muscatine, L., (1987) Low temperature evokes rapid exocytosis of symbiotic algae by a sea anemone. The Biological Bulletin. 172, 246.
Stenmark, H. and Olkkonen, V.M., (2001) The Rab GTPase family. Genome Biol. 2, 1-7.
Sturgill-Koszycki, S., Schlesinger, P.H., Chakraborty, P., Haddix, P.L., Collins, H.L., Fok, A.K., Allen, R.D., Gluck, S.L., Heuser, J. and Russell, D.G., (1994) Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science. 263, 678.
Suzuki, K. and Ohsumi, Y., (2007) Molecular machinery of autophagosome formation in yeast, Saccharomyces cerevisiae. FEBS letters. 581, 2156-2161.
Tamai, K., Tanaka, N., Nara, A., Yamamoto, A., Nakagawa, I., Yoshimori, T., Ueno, Y., Shimosegawa, T. and Sugamura, K., (2007) Role of Hrs in maturation of autophagosomes in mammalian cells. Biochemical and biophysical research communications. 360, 721-727.
Titlyanov, E., Titlyanova, T., Loya, Y. and Yamazato, K., (1998) Degradation and proliferation of zooxanthellae in planulae of the hermatypic coral Stylophora pistillata. Marine Biology. 130, 471-477.
Venn, A., Loram, J. and Douglas, A., (2008) Photosynthetic symbioses in animals. Journal of experimental botany. 59, 1069.
Venn, A., Tambutte, E., Lotto, S., Zoccola, D., Allemand, D. and Tambutte, S., (2009) Imaging intracellular pH in a reef coral and symbiotic anemone. Proceedings of the National Academy of Sciences. 106, 16574.
Via, L., Fratti, R., McFalone, M., Pagan-Ramos, E., Deretic, D. and Deretic, V., (1998) Effects of cytokines on mycobacterial phagosome maturation. Journal of cell science. 111, 897.
Vidal-Dupiol, J., Adjeroud, M., Roger, E., Foure, L., Duval, D., Mone, Y., Ferrier-Pages, C., Tambutte, E., Tambutte, S. and Zoccola, D., (2009) Coral bleaching under thermal stress: putative involvement of host/symbiont recognition mechanisms. BMC physiology. 9, 14.
Wang, J. and Douglas, A., (1998) Nitrogen recycling or nitrogen conservation in an alga-invertebrate symbiosis? Journal of experimental biology. 201, 2445.
Warner, M.E., Fitt, W.K. and Schmidt, G.W., (1999) Damage to photosystem II in symbiotic dinoflagellates: a determinant of coral bleaching. Proceedings of the National Academy of Sciences. 96, 8007.
Weis, V.M., (2008) Cellular mechanisms of Cnidarian bleaching: stress causes the collapse of symbiosis. Journal of experimental biology. 211, 3059.
Wood Charlson, E.M., Hollingsworth, L.L., Krupp, D.A. and Weis, V.M., (2006) Lectin/glycan interactions play a role in recognition in a coral/dinoflagellate symbiosis. Cellular Microbiology. 8, 1985-1993.
Wooldridge, S.A., (2010) Is the coral algae symbiosis really ‘mutually beneficial’for the partners? BioEssays. 32, 615-625.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top