跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/07 06:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:潘弘斌
研究生(外文):Hong-Bin Pan
論文名稱:纜索參數振動研究
論文名稱(外文):Study on Cable Parametric Vibrations
指導教授:陳振華陳振華引用關係
指導教授(外文):Chern-Hwa Chen
學位類別:碩士
校院名稱:國立高雄大學
系所名稱:土木與環境工程學系碩士班
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:73
中文關鍵詞:斜張橋纜索纜索-橋面版互制參數振動斜拉索
外文關鍵詞:Cable-Stayed BridgeCableCable-deck interactionParametric vibrationStay Cable
相關次數:
  • 被引用被引用:2
  • 點閱點閱:276
  • 評分評分:
  • 下載下載:54
  • 收藏至我的研究室書目清單書目收藏:0
斜張橋主要組成構件包括橋塔、主梁與纜索,斜張橋的橋型因加入纜索系統,使得斜張橋主跨度已突破千米大關,也是長跨橋梁設計的首選造型。斜張橋進行氣動力分析時,因纜索的低阻尼及輕質量之特性,常忽略纜索局部振動行為,進而發生纜索疲勞損傷與斷裂破壞的情形。本文主要是從基本的單索參數振動模式解析推導出水平索-橋面版耦合互制非線性振動模式,並求解非線性參數振動問題。由數值模擬的結果可知,纜索受振動橋面的牽引作用,在共振情形下將引發出纜索強烈的非線性耦合共振現象,這將使得纜索產生過大振幅的耦合振動互制效應。
Cable-stayed bridges have become more and more popular in modern society due to their strong functionality and aesthetically appealing solution. In order to increase span, the addition of cable system makes the bridge more flexible and prone to vibrate under environmental and service loading such as wind, rain, traffic, and earthquake. The effects lead to significant new dynamic phenomena. In particular, high amplitude localized oscillations can arise in the stay cable. For cable stayed bridges, the global vibration amplitude of deck can be examined by wind tunnel testing. However, stay cables are very low-damped and flexible due to their length. Hence local vibrations of stay cables may be excited and are of critical importance from the safety point of view.
In this paper, an analytic work is adopted to find out and to verify the mechanisms of local vibration of the stay cables subject to bridge deck excitations. A continuum model by using the analytical methods will be find out for the study of cables subjected to anchorage excitation. Finally, the effects of the non-linear planar dynamics on the stay cable are investigated by using Kao Ping Hsi cable-stayed bridge.
第一章 緒論
1.1 研究動機與目的
1.2 研究方法與範圍
1.3 論文架構
第二章 文獻回顧
2.1 參數振動
2.2 纜索風雨激振
2.3 單斜拉索振動
第三章 不考慮垂度單索參數振動模式
3.1 前言
3.2 運動方程式推導
3.3 案例分析
3.4 小結
第四章 考慮垂度單索參數振動模式
4.1 前言
4.2 運動方程式推導
4.3 案例分析
4.4 小結
第五章 結論與建議
5.1 結論
5.2 建議
參考文獻
Al-Qassab, M., and Nair, S., (2004), “Wavelet-Galerkin method for the free vibrations of an elastic cable carrying an attached mass,” Journal of Sound and Vibration, 270, 191-206.
Berlioz, A., and Lamarque, C. H., (2005), “A non-linear model for the dynamics of an inclined cable,” Journal of Sound and Vibration, 279(3-5), 619-639.
Caetano, E., Cunha, A., Gattulli, V., and Lepidi, M., (2008), “Cable–deck dynamic interactions at the International Guadiana Bridge: On-site measurements and finite element modeling,” Control Health Monit., 15, 237–264.
Cai, Y., and Chen, S. S., (1994), “Dynamics of elastic cable under parametric and external resonances,” Journal of Engineering Mechanics, 120(8), 1786-1802.
Chen, Z. Q., (2005a), “On site observation of wind-rain induced vibration of stay cable and its control,” Journal of Architecture and Civil Engineering, 22(4), 5-10.
Gattulli, V., Morandini, M., and Paolone, A., (2002), “A parametric analytical model for nonlinear dynamics in cable-stayed beam,” Earthquake Engineering & Structural Dynamics, 31(6), 1281-1300.
Georgakis, C. T., and Taylor, C. A., (2005a), “Nonlinear dynamics of cable stays Part 1: sinusoidal cable support excitation,” Journal of Sound and Vibration, 281(3-5), 537-564.
Georgakis, C. T., and Taylor, C. A., (2005b), “Nonlinear dynamics of cable stays Part 2: stochastic cable support excitation,” Journal of Sound and Vibration, 281(3-5), 565-591.
Hikami, Y., and Shirashi, N, (1988), “Rain-wind induced vibration of cables in cable-stayed bridges,” Journal of Wind Engineering and Industrial Aerodynamic, 29, 409-418.
Hobbs, R. E., and Raoof, M., (1996), “Behavior of cables under Dynamic or Repeated Loading,” J. Construct. Steel Res., 39(1), 31-50.
Irvine, H. M., (1981), “Cable Structure,” MIT Press.
Lilien, J. L., and Pinto, A. Da Costa, (1994), “Vibration amplitudes caused by parametric excitation of cable stayed structures,” Journal of Sound and Vibration, 174(1), 69-90.
Liu, Y., and Bergdahl, L., (1997), “Frequency-domain dynamic analysis of cables,” Engineering Structures, 19(6), 499-509.
Main, J. A., and Jones, P. N., (2000), “A comparison of full-scale measurement of stay cable vibration,” Structures Congress 2000-Advanced Technology in Structural Engineering, Sectionll, Chapter 2: 1-8.
Pacheco, B. M., and Fujino, Y., (1993), “Keeping cable calm,” Civil Engineering, 56-58.
Persoon, A. J., and Noorlander, K., (1999), “Full-scale measurements on the Erasmus Bridge after rain/wind induced cable vibrations,” Wind Engineering into the 21st Century, Balkema, 1019-1026.
Pinto da Costa, A., Martins, J. A., Branco, F., and Lilien, J. L., (1996), “Oscillations of bridge stay cables induced by periodic motions of deck and/or towers,” Journal of Engineering Mechanics, 122(7), 613-622.
Ruscheweyh, H. P., (1999), “The mechanism of rain-wind-induced vibration,” Bridge Aerodynamics, Balkema, 1041-1047.
Takahashi, K., (1991), “Dynamic stability of cables subjected to an axial periodic load,” Journal of Sound and Vibration, 144, 323-330.
Virlogeux, M., (1998), “Cable vibration in cable-stayed bridges,” Bridge Aerodynamics, 213-233.
Warnitchai, P., Fujino, Y., and Susumpow, T., (1995), “A non-linear dynamic model for cables and its application to a cable-structure system,” Journal of Sound and Vibration, 187(4), 695-712.
Wu, Q., Takahashi, K., Okabayashi, T., and Nakamura, S., (2003), “Response characteristics of local vibrations in stay cables on an existing cable-stayed bridge,” Journal of Sound and Vibration, 261, 403-420.
Wu, Q., Takahashi, K., and Nakamura, S., (2004), “Non-linear response of cables subjected to periodic support excitation considering cable loosening,” Journal of Sound and Vibration, 271(1-2), 453-463.
Yoshimura, T., Inoue, A., Kaji, K., and Savage, M. G., (1989), “Aerodynamic stability of the Aratsu Bridge” Recent Advances in Wind Engineering Proceedings of the 2nd Asia-Pacific Symposium on Wind Engineering, Beijing, 637-644.
Zuo, D., and Jones, N. P., (2009), “Wind tunnel testing of yawed and inclined circular cylinders in the context of field observations of stay-cable vibrations,” Journal of Wind Engineering and Industrial Aerodynamics, 97(5-6), 219-227.
Zuo, D., and Jones, N. P., (2010), “Interpretation of field observations of wind- and rain-wind- induced stay cable vibrations,” Journal of Wind Engineering and Industrial Aerodynamics, 98(2), 73-87.
顧明、劉慈軍、羅國強,(1998),「斜拉橋拉索的風(雨)激振及控制」,上海力學,第十九卷,第四期,281-288頁。
張華、練繼建、劉奈餛,(2003),「應用蒙特卡羅方法求解ㄧ類隨機微分方程」,天津大學學報,第三十六卷,第四期,430-433頁。
李壽英,(2005),「斜拉橋拉索風雨激振機裡及其控制理論研究」,同濟大學博士學位論文,顧明教授指導。
任淑琰,(2007),「斜拉橋拉索參數振動研究」,同濟大學博士學位論文,顧明教授指導。
左曉寶、李愛群、孫香花,(2008),「SMA阻尼器-斜拉索系統減振控制試驗」,南京理工大學學報,第32卷,第六期,666-671頁。
王中文、朱宏平、方秦漢、顧全鈞、陳儒發,(2010),「杭州灣跨海大橋北航道橋斜拉索減振研究」,中國鐵道科學,第31卷,第二期,45-49頁。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top