跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2024/12/06 07:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:賴俊帆
研究生(外文):Chun-Fan Lai
論文名稱:三維雙材質具氧化層基體絕緣結構之矽金半場效電晶體和金氧半場效電晶體之次臨界行為研究
論文名稱(外文):The Investigation on Subthreshold Behavior Model for the Three Dimensional Dual-Material Gate SOI MESFETs and MOSFETs
指導教授:江德光
學位類別:碩士
校院名稱:國立高雄大學
系所名稱:電機工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:136
中文關鍵詞:雙材質金半場效電晶體、雙材質金氧半場效電晶體、短通道行為、帕森方程式、短通道臨界電壓縮減
外文關鍵詞:Dual-material gate MESFETsDual-material gate MOSFETsShort channel effectsPoisson equationThreshold voltage roll-off
相關次數:
  • 被引用被引用:1
  • 點閱點閱:164
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
近年來雙材質閘極(Dual-material gate)的金半場效電晶體(MESFET)和金氧半場效電晶體(MOSFET)已經引起了許多的學者廣泛的注意和研究,和一般傳統的單材質閘極結構(Single-material gate)的MESFET和MOSFET相比較,雙材質閘極電晶體在尺度微縮上有較大的空間和優勢,例如,雙材質在接面處提供了一個步階電位,和一個高電場,這可以提供電子做中段加速,且在接近汲極端處的電場會明顯的低於單閘極電晶體,這現象可以降低了熱載子效應,另外也具備了較理想的次臨界斜率和較低的閘極漏電流,更符合目前電子電路設計傾向奈米級尺寸的需求。
本論文乃基於帕森方程式之全三維解,成功地推導出三維雙材質結構之金半場效電晶體(MESFET)和金氧半場效電晶體(MOSFET)模型,此模型不僅準確顯示出電位分佈(potential distribution)、電場分佈(electric distribution)、次臨界電流(subthreshold current)、和次臨界斜率(subthreshold slope) 、和短通道臨界電壓縮減(threshold voltage degradation)、汲極偏壓導致能障降低(drain-induced-barrier-lowering)等效應,而且此模型之演算結果與模擬數據相當接近,足以提供基本元件設計之導向,並進而被應用於積體電路之模擬。
In recent years, dual-material gate SOI MESFETs and MOSFETs have already caused extensive attention by some researches due to the dual-material gate has larger space and advantage on length scaling when in comparison to conventional single-material gate devices. Dual-material gate (DMG) MESFETs and DMG MOSFETs effectively induce the step potential as well as peak electric fields within the channel improve the carrier transit speed. In comparison to Single-material gate (SMG) device, it is obviously observed that the DMG device has the lower electrical field near the drain side that it will decrease the hot carrier effect (HCE). In addition, because DMG SOI MESFETs and MOSFETs have better swing and lower gate leakage current than SMG device, they are good candidates to apply to the high-frequency communication circuits.
In this thesis, based on the exact solution of the Poisson equation, we successfully develop an analytical short-channel subthreshold behavior model for SOI MESFETs and MOSFETs. These analytical results are useful in predictive compact modeling of SOI MESFETs and MOSFETs. The model explicitly shows the distribution of electric potential, the distribution of electric potential, subthreshold current, subthreshold slope, short channel threshold voltage roll-off, and drain-induced-barrier-lowing (DIBL) effect. The model is verified by the published numerical simulations with close agreement. This model not only gives the physical insights into the device physics but also offers the basic designing guidance of the DMG devices. Due to its computational efficiency, this model can be applied for SPICE simulation.
摘要
Abstract
Acknowledgements
Contents
List of Figures
Chapter 1 Introduction
1.1 MESFETs Devices Overview
1.2 MOSFETs Devices Overview
Chapter 2 Three Dimensional Potential and Threshold Voltage Model for Dual-Material Gate SOI MESFETs
2.1 Model Derivation
2.2 3-D Boundary Conditions Value Problem
2.3 1-D Solution
2.4 2-D Coefficients Solution
2.5 3-D Laplace Equation Solution
2.6 3-D Generalized Potential Model
2.7 Minimum Channel Potential
2.8 Electric Field and Potential Contour
2.9 Threshold Voltage Roll-off Model
2.10 Threshold Voltage by Considering the Quantum Mechanics Effect
2.11 Conclusions

Chapter 3 Three Dimensional Subthreshold Current Model for Dual-Material Gate
SOI MESFETs
3.1 Subthreshold Slope Model
3.2 Subthreshold Current Model
3.3 Conclusions
Chapter 4 Three Dimensional Potential and Threshold Voltage Model for Dual-Material
Gate SOI MOSFETs
4.1 Model Derivation
4.2 3-D Boundary Conditions Value Problem
4.3 1-D, 2-D, and 3-D Solution
4.4 3-D Generalized Potential Model
4.5 Minimum Channel Potential
4.6 Electric Field and Potential Contour
4.7 Threshold Voltage Roll-off Model
4.8 Threshold Voltage by Considering the Quantum Mechanics Effect
4.9 Conclusions
Chapter 5 Three Dimensional Subthreshold Current Model for Dual-Material Gate
SOI MOSFETs
5.1 Subthreshold Slope Model
5.2 Subthreshold Current Model
5.3 Conclusions
Chapter 6 Conclusions and Future Works
6.1 Conclusions
6.2 Future Works
References
1.J. D. Marshall, and J. D. Meindl, "A sub- and near-threshold current model for silicon MESFETs," IEEE Trans. Electron Devices, vol. 35, no. 3, pp. 388-390, March, 1988.
2.Q. Chen, M. Willander, C. H. Thaki, and E. R. A. Evans, "Fabrication and performances of delta-dopped Si n-MESFET grown by MBE," Electron Lett., vol. 29, no. 8, pp. 671-673, April, 1993.
3.G. V. Ram, and M. I. Elmasry, "On the scalling of Si-MESFET’s," IEEE Trans. Electron Devices, vol. 1, no. 12, pp. 259-262, Dec., 1980.
4.P. A. Tove, K. Bohlin, F. Masszi, H. Norde, J. Nylander, J. Tiren, and U. Magnusson, "Complementary Si MESFET concept using silicon on sapphire technology," IEEE Trans. Electron Devices Lett., vol. 9, no. 1, pp. 47-49, Jan., 1988.
5.K. P. Macwilim, and J. D. Plummer, "Device physics and technology of complementary silicon MESFET’s for VLSI applications," IEEE Trans. Electron Devices, vol. 38, no. 12, pp. 2619-2631, Dec., 1991.
6.Y. Tosaka, K. Suzuki, and T. Sugii, "Scaling-parameter-dependent model for subthreshold swing in double-gate SOI MOSFETs," IEEE Trans. Electron Devices Lett., vol. 15, no. 11 pp. 466-468, Nov., 1994.
7.R. V. Tuyl, and C. Liechti, "High-speed integrated logic with GaAs MESFETs," Solid-State and Integrated Circuit Technology, pp. 114-115, Jun., 1974.
8.X. Yang, X. Zheng, and J. Hao, "Direct coupled FET logic (DCFL) circuit for GaAs LSIC application," Microwave and Millimeter Wave Technology Proceeding, vol. 12, no. 5, pp. 913-916, 1998.
9.T. K. Chiang, "The new analytical subthreshold behavior model for dual material gate (DMG) SOI MESFET," Solid-State and Integrated Circuit Technology, pp. 288-189, Oct., 2008.
10.吳朝允, 2009 "雙材質閘極具氧化層基體絕緣結構之矽金半場效電晶體與砷化鎵鋁/砷化鎵異質結構場效電晶體之次臨界行為研究," 南台科技大學電子工程研究所碩士論文。
11.T. Khan, D. Vasileska, and T. J. Thornton, "Subthreshold electron mobility in SOI MOSFETs and MESFETs," IEEE Trans. Electron Devices, vol. 52, no. 7, pp. 1622-1626, July, 2005.
12.W. Long, H. Ou, J. M. Kuo, and K. K. Chin, "Dual material gate (DMG) field effect transistor," IEEE Trans. Electron Devices, vol. 46, no. 5, pp. 865-870, May, 1999.
13.K. K. Young, "Short-channel effect in fully depleted SOI MOSFETs," IEEE Trans. Electron Devices, vol. 36, no. 2, pp. 399-402, Feb., 1989.
14.P. C. Yen, and J. G. Fossum, "Physical subthreshold MOSFET modeling applied to viable design of deep-submicrometer fully depleted SOI low-voltage CMOS technology," IEEE Trans. Electron Devices, vol. 42, no. 9, pp. 1605-1613, Sep., 1995.
15.M. Saxena, S. Haldar, M. Gupta, and R. S. Gupta, "Physcis-Based analytical modeling of potential and electrical field distribution in Dual Material Gate (DMG)-MOSFET for improved hot electron effect and carrier transport efficiency," IEEE Trans. Electron Devices, vol. 49, no. 11, pp. 1928-1938, Nov., 2002.
16.M. J. Kumar, and A. Chaudhry, "Two-Dimensional analytical modeling of fully depleted DMG SOI MOSFET and evidence for diminished SCEs," IEEE Trans. Electron Devices, vol. 51, no. 4, pp. 569-574, April, 2004.
17.DEVICE, Three-dimensional device simulation program. ISE-TCAD, 2003.
18.P. Pandey, B. B. Pal, and S. Jit, "A new 2-D model for the potential distribution and threshold voltage of fully depleted short-channel Si-SOI MESFETs," IEEE Trans. Electron Devices, vol. 51, no. 2, pp. 246-256, Feb., 2004.
19.D. Z. Pilja, "An analytical 3-D model for small dimensions MOSFETs' threshold voltage," PROC. 22nd International Conference on Microelectronics (MIEL2000), vol. 1, NIS, SERBIA, May, 2000.
20.N. B. Balamurugen, M. Balasubadra, and K. Suguna, "A new analytic description of short-channel effects in fully depleted single gate SOI MESFETs for low power VLSI application," IEEE-ICSCN 2007, pp. 382-387, Feb., 2007.
21.S. P. Kumar, A. Agrawal, R. Chaujar, S. Kabra, M. Gupta, and R. S. Gupta, "3-Dimensional analytical modeling and simulation of fully depleted AlGaN/GaN modulation doped field effect transistor," Physics of Semiconductor Devices, pp. 373-376, Dec., 2007.
22.P. Hashemi, A. Fathi, and E. A. Kusha, "Two-Dimensional analytical modeling and simulation of the potential and threshotd voltage of a new fully depleted dual metal gate SOI MESFET," IEEE Transactions on Electron Devices, pp. 372-375, Dec., 2004.
23.J. G. Cao, "A simplified 2-D analytic model for the threshold-voltage of fully depleted short gate-length Si-SOI MESFETs," IEEE Transactions on Electron Devices, vol. 43, pp. 1314-1315, Aug., 1996.
24.B. Agrawal, and J. D. Meindl, "Three-dimensional analytical subthreshold models for bulk MOSFETs," IEEE Transactions on Electron Devices, vol. 42, no. 12, pp. 246-256,Dec., 1995.
25.T. K. Chiang, Y. H. Wang, and M. P. Houng, "Modeling of threshold voltage and subthreshold swing of short-channel SOI MESFETs," Solid-State Electronics, vol.43, no. 1, pp. 123-129, 1998.
26.S. Jit, P. Pandey, and B. B. Pal, "A new two-dimensional model for the drain-induced barrier lowering of fully depleted short-channel SOI-MESFET’s," Journal of Semiconductor Technology and Science, vol.3, no. 4 , pp. 217-222, Dec., 2003.
27.X. Zhou, and W. Long, "A novel hetero-material gate (HMG) MOSFET for deep-submicron ULSI technology," IEEE Trans. Electron Devices, vol. 45, no. 12, pp. 2546-2548, Dec., 1998.
28.S. Jit, S. Morarka, and S. Mishra, "A 2-D model for the potential distribution and threshold voltage of fully depleted short-channel ion-implanted silicon MESFETs," Journal of Semiconductor Technology and Science, vol. 5, pp. 173-181, March, 2005.
29.楊鳴傑, 2010 "四閘極電晶體具氧化層基體絕緣結構之短通道行為研究," 國立高雄大學電機工程研究所碩士論文。
30.T. Yuan, and X. Liang, "A 2-D analytical solution for SCEs in DG MOSFETs," IEEE Trans. Electron Devices, vol. 51, no. 9, pp. 1385-1391, Sep., 2004.
31.N. Lakhdar, F. Djeffal, M. A. Adbi, and D. Arar, "An analytical threshold voltage model to study the scaling capability of deep submicron double-gate GaN-MESFETs," International Workshop on symbolic and Numerical Methods, Modeling and Applications to Circuit Design (SM2ACD), 2010.
32.E. Hamid, H. A. Guitart, and B. Iniguez, "Two-Dimensional analytical threshold voltage and subthreshold swing models of undoped symmetric double-gate MOSFETs," IEEE Trans. Electron Devices, vol. 54, no. 6, pp. 1402-1408, June, 2007.
33.A. I. Khan, M. K. Ashraf, and A. Haque, "Influence of wave function penetration on short channel effects in nanoscale double gate MOSFETs," Electron Device and Solid-State Circuit, pp. 109-112, Dec., 2007.
34.H. Abd, J. R. Guitart, and V. Kilchytska, "A 3-D analytical physically Based model for the subthreshold swing in undoped trigate FinFETs," IEEE Trans. Electron Devices, vol. 54, no. 9, pp. 2487-2496, Sept., 2007.
35.Q. Chen, B. Agrawal, and J. D. Meindl, "A comprehensive analytical subthreshold swing model for double-gate MOSFETs," IEEE Trans. Electron Devices, vol. 49, no. 6, pp. 1086-1090, June, 2002.
36.J. D. Marshall, and J. D. Meindl, "An analytical two-dimensional model for silicon MESFET’s," IEEE Trans. Electron Devices, vol. 35, no. 3, pp. 373-383, March, 1988.
37.Y. Tosaka, K. Suzuki, and T. Sugii, "Scalling-parameter-dependent model for subthreshold swing S in double-gate SOI MOSFETs," IEEE Trans. Electron Devices, vol. 15, no. 11, pp. 466-468, 2004.
38.S. Jit, P. K. Pandey, and P. K. Tiwari, "Modeling of the subthreshold current and subthreshold swing of fully depleted short-channel Si-SOI-MESFTEs," Solid-State Electronics, pp. 57-62, 2009.
39.M. S. Islam, M. Hasan, and M. R. Islam, "An improved nonlinear DC I-V characteristics model for nanometer range GaAs MESFETs," TENCON 2009-2009 IEEE Region 10 Conference, pp. 1-5, 2009.
40.S. Jit, P. K. Pandey, and P. K. Tiwari, "Modeling of the subthreshold current and subthreshold swing of fully depleted short-channel Si-SOI-MESFETs," Solid-State Electronics, vol. 53, no. 1, pp. 57-62, Jan., 2009.
41.Y. Taur, X. Liang, W. Wang, and H. Lu, "A continuous analytic drain-current model for DG MOSFETs," IEEE Trans. Electron Devices, vol. 25, no. 2, pp. 107-109, Feb., 2004.
42.H. S. Wong, D. J. Frank, and P. M. Solomon, "Device design consideration for double-gate, ground-gated ultran-thin SOI MOSFETs at the 25nm channel length generation," IEDM Tech. Dig., pp. 407-410, 1998.
43.M. Saxena, S. Haldar, M. Gupta, and R. S. Gupta, "Physics-Based analytical modeling of potential and electrical field distribution in dual material gate (DMG)-MOSFET for improved hot electron effect and carrier transport efficiency," IEEE Trans. Electron Devices, vol. 49, no. 11, pp. 1928-1938, Nov., 2002.
44.K. Suzuki, "Analytical threshold voltage model for short channel double gate MOSFET’s," IEEE Trans. Electron Devices, vol. 43, no. 7, pp. 1166-1168, July, 1996.
45.K. Suzuki, Y. Tosaka, and T. Sugii, "Analytical model for n+-p+ double-gate SOI MOSFETs," IEEE Trans. Electron Devices, vol. 42, no. 11, Nov., 1995.
46.S. Odanaka, "Multidimensional discretization of the stationary quantum drift-diffusion model for ultrasmall MOSFET structures," IEEE TACD, vol. 23, no. 6, pp. 837-842, June, 2004.
47.D. Munteanu, J. L. Autran, P. Paillet, J. Baggio, O. Faynot, C. Jahan, and L. Tosti, "Investigation of quantum effects in ultra-thin body single- and double-gate devices submitted to heavy ion irradiation," IEEE Trans. Nuclear Science, vol. 53, no. 6, pp. 3363-3371, Dec., 2006.
48.D. Munteanu, J. L. Autran, P. Paillet, J. Baggio, and K. Castellan, "3D quantum numerical simulation of single-event transient in multiple-gate nanowire MOSFETs," IEEE Trans. Nuclear Science, vol. 54, no. 4, pp. 994-1001, Aug., 2007.
49.Y. S. Wu, and P. Su, "Analytical quantum-confinement model for short-channel gate-all-around MOSFETs under subthreshold region," IEEE Trans. Electron Devices, vol. 56, no. 11, pp. 2720-2725, Nov., 2009.
50.S. A. Hareland, S. Jallepalli, G. Chindalore, W. K. Shin, A. F. Tasch, and C. M. Maziur, "A simple model for quantum mechanical effects in hole inversion layers in silicon PMOS device," Solid-State Electron., vol. 44, no. 7, pp. 1172-1173, Mar., 1997.
51.J. Knoch, M. Zhang, and S. Mantl, "On the performance of single-gated ultrathin-body SOI Schottky-Barrier MOSFETs," IEEE Trans. Electron Devices, vol. 53, no. 7, pp. 1669-1674, July, 2006.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊