跳到主要內容

臺灣博碩士論文加值系統

(44.222.218.145) 您好!臺灣時間:2024/02/29 12:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王韋舜
研究生(外文):Wei-Shun Wang
論文名稱:應用多目標基因演算法改善離散餘弦結合奇異值分解之數位浮水印技術
論文名稱(外文):Improved DCT-SVD-based Watermarking Through Multi-objective Genetic Algorithm
指導教授:賴智錦賴智錦引用關係
指導教授(外文):Chih-Chin Lai
學位類別:碩士
校院名稱:國立高雄大學
系所名稱:電機工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:70
中文關鍵詞:數位浮水印多目標基因演算法離散餘弦轉換奇異值分解
外文關鍵詞:Digital watermarkingMulti-objective genetic algorithmDiscrete cosine transformSingular value decomposition
相關次數:
  • 被引用被引用:1
  • 點閱點閱:244
  • 評分評分:
  • 下載下載:31
  • 收藏至我的研究室書目清單書目收藏:1
伴隨著個人電腦與網際網路的普及,以及數位化的趨勢,如何保護數位多媒體的智慧財產權是一個重要的問題。數位浮水印技術提供了一個有效的解決方法以保護數位多媒體的著作權。本論文提出一個結合離散餘弦轉換與奇異值分解之浮水印技術,並且透過多目標基因演算法對數位浮水印技術進行最佳化。使用者可以從多目標基因演算法產生的解集合中挑選理想的最佳解,如此可滿足需求不同的使用者;另外,相較於單目標基因演算法,多目標基因演算法所求得的解集合穩定性更高。實驗結果證實,我們的方法所產生的浮水印不僅具有高抗攻擊性,亦具有良好的影像品質,並且較單目標最佳化式浮水印演算法穩定性更高、應用度更廣。
With the trend of digitalization, the popularization of personal computer, and Internet, an important issue should be considered that is how to protect the multimedia files from illegal use. Digital watermarking is an effective solution for protecting the copyright of multimedia files. In this paper, we proposed a DCT-SVD-based watermarking algorithm, and we optimized the algorithm through a multi-objective genetic algorithm (MOGA). The user can choose one optimal solution from the solution set according to the demand of user. Furthermore, the solutions obtained from MOGA are more stable than those from a single-objective genetic algorithm (SGA). Experimental results show that the proposed approach has batter robustness as well as better image quality, and the proposed approach is more stable than SGA.
摘要
ABSTRACT
誌謝
目錄
圖目錄
表目錄
第一章 導論
第二章 背景回顧
2.1 離散餘弦轉換
2.2 奇異值分解
2.3 單目標基因演算法
2.3.1 染色體編碼
2.3.2 選擇機制
2.3.3 交配與突變
2.3.4 終止條件
2.4 多目標最佳化演算法
2.4.1 多目標最佳化問題
2.4.2 多目標最佳化概念
2.5 非支配排序基因演算法
2.5.1 快速非支配排序法
2.5.2 擁擠距離
2.5.3 擁擠競爭選擇法
第三章 多目標數位浮水印系統
3.1 浮水印嵌入程序
3.2 浮水印擷取程序
3.3 多目標基因演算法配置
3.3.1 染色體編碼方式
3.3.2 適應函數
3.3.3 交配與突變
第四章 實驗結果
4.1 實驗環境
4.2 多目標與單目標的實驗數據
4.2.1 本論文所提出的方法(多目標)之實驗數據
4.2.2 單目標基因演算法之實驗數據
4.2.3 多目標與單目標的實驗結果比較
4.3 其他多目標基因演算法之實驗結果
第五章 結論
參考文獻
[1] R. G. van Schyndel, A. Z. Tirkel, and C. F. Osborne, “A digital watermark,” in Proc. IEEE International Conference on Image Processing, 1994, vol. 2, pp. 86-90.
[2] I. Pitas and T. H. Kaskalis, “Applying signatures on digital images,” in Proc. IEEE Workshop on Nonlinear Signal and Image Processing, Halkidiki, Greece, June 1995, pp. 460-463.
[3] O. Bruyndonckx, J. J. Quisquater, and B. Macq, “Spatial method for copyright labeling of digital images,” in Proc. IEEE Workshop on Nonlinear Signal and Image Processing, Halkidiki, Greece, June 1995, pp. 456-459.
[4] S. Walton, “Image authentication for a slippery new age,” Dr. Dobb's Journal of Software Tools, vol. 20, no. 4, pp. 18-26, Apr. 1995.
[5] W. Bender, D. Gruhl, N. Morimoto, and A. Lu, “Techniques for data hiding,” I.B.M. Systems Journal, vol. 35, no. 3 & 4, pp. 313-336, 1996.
[6] I. Cox, J. Kilian, F. T. Leighton, and T. Shamoon, “Secure spread spectrum watermarking for multimedia,” IEEE Transactions on Image Processing, vol.6, no. 12, pp. 1673-1687, Dec. 1997.
[7] C.-T. Hsu and J.-L. Wu, “Hidden digital watermarks in images,” IEEE Transactions on Image Processing, vol. 8, no. 1, pp. 58-68, Jan. 1999.
[8] C. I. Podilchuk and W. Zeng, “Digital image watermarking using visual models,” in Proc. SPIE, San Jose, CA, Feb. 1997, vol. 3016, pp. 100-111.
[9] I. J. Cox, J. Kilian, T. Leighton, and T. Shamoon, “A secure, robust watermark for multimedia,” in Proc. Information Hiding, First International Workshop, Cambridge, U.K., June 1996, vol. 1174, pp. 185-206.
[10] M. Barni, F. Bartolini, V. Cappellini, and A. Piva, “A DCT- domain system for robust image watermarking,” Signal Processing (Special Issue on Watermarking), vol. 66, no. 3, pp. 357-372, May 1998.
[11] J. J. K. O. Ruanaidh, W. J. Dowling, and F. M. Boland, “Phase watermarking of digital images,” in Proc. IEEE International Conference on Image Processing, Lausanne Switzerland, Sept. 1996, vol. 3, pp. 239-242.
[12] M. Brain, F. Bartolini, and A. Piva, “Improved wavelet-based watermarking through pixel-wise masking,” IEEE Transactions on Image Processing, vol. 10, no. 5, pp. 783-791, May 2001.
[13] D. Kundur and D. Hatzinakos, “A robust digital image watermarking method using wavelet-based fusion,” in Proc. IEEE International Conference on Image Processing, Santa Barbara, California, Oct. 1997, vol. 1, pp. 544-547.
[14] K.-L. Chung, C.-H. Shen, and L.-C. Chang, “A novel SVD- and VQ-based image hiding scheme,” Pattern Recognition Letters, vol. 22, no. 9, pp. 1051-1058, July 2001.
[15] D. V. S. Chandra, “Digital image watermarking using singular value decomposition,” in Proc. the 45th Midwest Symposium on Circuits and Systems, 2002, vol. 3, pp. 264-267.
[16] R. Liu and T. Tan, “An SVD-based watermarking scheme for protecting rightful ownership,” IEEE Transactions on Multimedia, vol. 4, no. 1, pp. 121-128, Mar. 2002.
[17] C.-C. Chang and Y.-S. Hu, “A digital watermarking scheme based on singular value decomposition,” in Proc. International Symposium on Combinatorics, Algorithms, Probabilistic and Experimental Methodologies, Hangzhou, China, 2007, vol.4614, pp. 82-93.
[18] C.-C. Chang, P. Tsai, and C.-C. Lin, “SVD-based digital image watermarking scheme,” Pattern Recognition Letters, vol. 26, no. 10, pp. 1577-1586, 2005.
[19] K.-L. Chung, W.-N. Yang, Y.-H. Huang, S.-T. Wu, and Y.-C. Hsu, “On SVD-based watermarking algorithm,” Applied Mathematics and Computation, vol. 188, no. 1, pp. 54-57, 2007.
[20] M.-Q. Fan, H.-X. Wang, and S.-K. Li, “Restudy on SVD-based watermarking scheme,” Applied Mathematics and Computation, vol. 203, no. 2, pp. 926-930, 2008.
[21] S. S. Bedi, A. Kumar, and P. Kapoor, “Robust secure SVD based DCT-DWT oriented watermarking technique for image authentication,” Special Issue of the International Journal of the Computer, the Internet and Management, vol. 17, no. SP1, pp. 46.1-46.7, Mar. 2009.
[22] V. I. Gorodetski, L. J. Popyack, V. Samoilov, and V. A. Skormin, “SVD-based approach to transparent embedding data into digital images,” in Proc. Int. Workshop on Mathematical Methods, Models and Architecture for Computer Network Security, St. Petersburg, Russia, May 2001, vol. 2052, pp. 263-274.
[23] Q. Liu and Q. Ai, “A combination of DCT-based and SVD-based watermarking scheme,” in Proc. IEEE International Conference on Signal Processing, Sept. 2004, vol. 1, pp. 873-876.
[24] E. Yavuz and Z. Telatar, “SVD adapted DCT domain DC subband image watermarking against watermark ambiguity,” in Proc. Multimedia Content Representation, Classification and Security, 2006, Vol. 4105, pp. 66-73.
[25] A. Sverdlov, S. Dexter, and A. M. Eskicioglu, “Robust DCT-SVD domain image watermarking for copyright protection: embedding data in all frequencies,” in Proc. the 13th European Signal Processing Conference (EUSIPCO 2005), Antalya, Turkey, September 2005, pp. 4-8.
[26] Q. Li, C. Yuan, and Y.-Z. Zhong, “Adaptive DWT-SVD domain image watermarking using human visual model,” in Proc. IEEE International Conference on Advanced Communication Technology, Feb. 2007, vol. 3, pp. 1947-1951.
[27] E. Yavuz and Z. Telatar, “Improved SVD-DWT based digital image watermarking against watermark ambiguity,” in Proc. ACM Symposium on Applied Computing, 2007, pp. 1051-1055.
[28] E. Ganic and A. M. Eskicioglu, “Robust DWT-SVD domain image watermarking: embedding data in all frequencies,” in Proc. 2004 Multimedia and Security Workshop on Multimedia and Security, Sept. 2004, pp. 166-174.
[29] J. H. Holland, Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor, 1975.
[30] R.-Z. Wang, C.-F. Lin, and J.-C. Lin, “Image hiding by optimal LSB substitution and genetic algorithm,” Pattern Recognition, vol. 34, no. 3, pp. 671-683, March 2001.
[31] C.-S. Shieh, H.-C. Huang, F.-H. Wa, and J.-S. Pan, “Genetic watermarking based on transform-domain techniques,” Pattern Recognition, vol. 37, no. 3, pp. 555-565, March, 2004.
[32] F.-Y. Shih and Y.-T. Wu, “Enhancement of image watermark retrieval based on genetic algorithms,” Journal of Visual Communication and Image Representation, vol. 16, no. 2, pp. 115-133, April 2005.
[33] Z. Wei, H. Li, J. Dai, and S. Wang, “Image watermarking based on genetic algorithm,” in Proc. IEEE International Conference on Multimedia and Expo, 2006, pp.1117-1120.
[34] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in Proc. IEEE International Conference on Neural Network, 1995, pp. 1942-1948.
[35] E. Vahedi, C. Lucas, R. A. Zoroofi, and M. Shiva, “A new approach for image watermarking by using particle swarm optimization,” in Proc. IEEE International Conference on Signal Processing and Communications, Nov. 2007, pp. 1383-1386.
[36] V. Aslantas, A. L. Dogan, and S. Ozturk, "DWT-SVD based image watermarking using particle swarm optimizer," in Proc. IEEE International Conference on Multimedia and Expo, 2008, pp. 241-244.
[37] M. Monemizadeh and S. A. Seyedin, “Optimal DWT-SVD domain image watermarking using multi-objective evolutionary algorithms,” in Proc. 2009 WRI World Congress on Computer Science and Information Engineering, 2009, vol. 3, pp. 259-263.
[38] S. H. Amiri and M. Jamzad, “A robust image watermarking method in wavelet domain using genetic algorithm,” in Proc. International Conference on Availability, Reliability and Security, 2009, pp. 612-617.
[39] J.-S. Lee, F.-P. Chuang, and K.-H. Tsai, “Image watermarking based on multiple objective genetic algorithm,” in Proc. Fifth International Conference on Intelligent Information Hiding and Multimedia Signal Processing, 2009, pp. 102-105.
[40] J. Luo, Y.-H. Pan, and L. Tan, “Digital watermarking multi-objective optimization based on multi-wavelet,” in Proc. IEEE International Conference on Control and Automation, Dec. 2009, pp. 2299-2304.
[41] N. Srinivas and K. Deb, “Multiobjective function optimization using nondominated sorting genetic algorithms,” Evol. Comput., vol. 2, no. 3, pp. 221-248, 1995.
[42] C. M. Fonseca and P. J. Fleming, “Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization,” in Proc. the Fifth International Conference on Genetic Algorithms, S. Forrest, Ed. San Mateo, CA: Morgan Kauffman, 1993, pp. 416-423.
[43] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multi-objective genetic algorithm: NSGA-II,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182-197, April 2002.
[44] K. Deb and R. B. Agrawal, “Simulated binary crossover for continuous search space,” Complex Syst., vol.9, no. 2, pp. 115-148, April 1995.
[45] K. Deb and M. Goyal, “A combined genetic adaptive search (geneAS) for engineering design,” Computer Science and Informatics, vol. 26, no. 4, pp. 30-45, 1996.
[46] G. H. Golub and C. Reinsch, “Singular value decomposition and least squares solutions,” Numerische Mathematik, vol. 14, no. 5, pp. 403-420, 1970.
[47] J.-F. Yang and C.-L. Lu, “Combined techniques of singular value decomposition and vector quantization for image coding,” IEEE Transactions on Image Processing, vol. 4, no. 8, pp. 1141-1146, 1995.
[48] Z. Hou, “Adaptive singular value decomposition in wavelet domain for image denoising,” Pattern Recognition, vol. 36, no. 8, pp. 1747-1763, 2003.
[49] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms, Wiley, 2001.
[50] Z. Wang, A. C. Bovik, “A universal image quality index,” IEEE Signal Processing Letters, vol. 9, no. 3, pp. 81-84, April 2004.
[51] Copyright © 2001, Shelby Pereira, University of Geneva, Vision Group. http://cvml.unige.ch/ResearchProects/Watermarking/Checkmark/
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 35.林文賜、林昭遠、黃碧慧、周文杰(2008),應用類神經網路及模糊理論於崩塌地萃取模式建立之研究,中華水土保持學報,39(1): 1-9 。
2. 34.陳昆廷、蔡光榮、王宣惠、林欽川(2008),多變量不安定指數分析法應用於屏東山區道路邊坡崩塌潛感評估模式之建置研究,中興工程,第100期,中興工程顧問社,第65~72頁。
3. 32.賴世偉、林家榮、鄭旭涵、林昭遠(2008),石門水庫集水區暴雨誘發型之崩塌地潛感分析,水土保持學報 40:2;2008.06[民97.06] 頁163-179。
4. 30.蔡婷鈺、鄒明誠、葉怡成、李振民(2007),以六種資料探勘方法分析影響集集大地震引起山崩之重要因子,中華林學季刊,第四十卷第一期,第67-79頁。
5. 39.蘇苗彬、陳毅輝、方俊傑(2009),應用不安定指數法於坡地崩塌之潛勢分析,水保技術 4:1 2009.01[民98.01] 頁9-23。
6. 38.雷祖強、周天穎、劉盈序(2009),以不安定指數法與模糊推論機制於雪霸國家公園內崩塌潛勢劃分之研究,水保技術 4:3 2009.07[民98.07] 頁151-163。
7. 37.沈哲緯;吳秋雅;林彥享;鄭錦桐;陳建宏;邵國士;紀宗吉;張閔翔(2009),運用多變量統計進行臺灣中部地區之斜坡單元豪雨誘發山崩潛勢分析,中興工程 103 2009.04[民98.04] 頁25-34。
8. 36.黃麗娟、莊智瑋,何世華,林昭遠(2008),衛星影像植生指標優選之研究,水土保持學報, 40(1):39-50。
9. 25.趙振平、高玉錠(2007),不安定指數法改進模式應用於南勢溪集水區山崩潛感分析之研究,中華水土保持學報 382 2007.06[民96.06] 頁123-133。
10. 23.蔡光榮、劉明忠、戴君翰、施俊廷(2006),台灣中部山區道路邊坡崩塌特性之數值分析模式建置,臺灣公路工程第32卷第12期,pp33-45。
11. 3.張渝龍、葉明官(1991),高雄縣甲仙至美濃間儲油氣潛能之研究,石油季刊第27卷,第三期,中國石油協會。
12. 2.張石角(1987),山坡地潛在危險之預測及其在環境影響評估之應用,中華水土保持學報,18(2):41-62。
13. 1.李三畏(1984),台灣崩坍問題探討,地工技術雜誌第七期:43-49。