跳到主要內容

臺灣博碩士論文加值系統

(44.200.86.95) 您好!臺灣時間:2024/05/30 04:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蘇郁儒
研究生(外文):Yu-Ru Su
論文名稱:不同銦成分與厚度氮化銦鎵p-n單接面與氮化銦鎵/矽p-n雙接面太陽能電池的模擬分析
論文名稱(外文):Simulation and Analysis of InGaN p-n Single Junction and InGaN/Si p-n Double Junction Solar Cells with Indium Composition and Thickness Dependences
指導教授:馮世維
指導教授(外文):Shih-Wei Feng
學位類別:碩士
校院名稱:國立高雄大學
系所名稱:應用物理學系碩士班
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:150
中文關鍵詞:氮化銦鎵太陽能電池氮化銦鎵/矽推疊太陽能電池p-n接面數值模擬
外文關鍵詞:InGaN Solar CellInGaN/Si Tandem Solar Cellp-n JunctionNumerical Simulations
相關次數:
  • 被引用被引用:0
  • 點閱點閱:140
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於氮化銦鎵的能隙變化可以從0.7~ 3.4 eV,幾乎涵蓋了整個太陽能光譜,相當適合作為太陽能電池的材料。為使太陽能電池效率與各種參數最佳化,我們進行氮化銦鎵單接面與氮化銦鎵/矽推疊太陽能電池之數值模擬,數值模擬對氮化銦鎵單接面與氮化銦鎵/矽堆疊太陽能電池的元件設計與製作非常重要。我們模擬改變不同銦含量和n型及p型氮化銦鎵的厚度,來分析幾個重要的太陽能電池元件的特性參數,如短路電流(Jsc)、開路電壓(Voc)、填滿因子(FF)、轉換效率(η)、與最大輸出功率(Pmax)。
以p-n單接面的氮化銦鎵太陽能電池來說,所有的特性參數皆和銦含量比例有很大的關係。而在In0.6Ga0.4N時,可以得到最到的轉換效率約22%,因為In0.6Ga0.4N的能隙是1.42 eV,與目前擁有最大的轉換效率的太陽能電池材料GaAs幾乎一樣。氮化銦鎵的吸收系數很大,氮化銦鎵太陽能電池的總厚度應控制在500 nm以下,厚度超過500 nm,其吸收達到飽和,對轉換效率來說未必有幫助。
以p-n雙接面的氮化銦鎵/矽推疊太陽能電池而言,最重要的是兩層之間的電流匹配問題,輸出的總電流是由兩層接面所產生較小電流者來決定,銦含量以及厚度的設定是設計雙層電池最重要的關鍵。而開路電壓的部分可以說就像是電池串聯一樣,是兩個接面開路電壓的總和。在填滿因子的圖中可以看到一些轉折點,這都是因為電流匹配的影響而產生。轉換效率一開始隨銦含量的增加而增加,但是當到達電流匹配的轉折點時,轉換效率會開始明顯的變化。在p型氮化銦鎵的厚度為100 nm時,轉換效率的最大值約37%,此值和單接面的相比約提高68%。而氮化銦鎵的厚度不可以超過500 nm,若氮化銦鎵的厚度太厚,幾乎所有的光都會被氮化銦鎵吸收,這樣會使矽接面沒有作用降低效率。
數值模擬結果將可提供氮化銦鎵單接面與氮化銦鎵/矽推疊太陽能電池元件結構與製程最佳化條件。
InxGa1-xN alloys feature a bandgap ranging from 0.7eV to 3.4eV, covering almost the entire solar spectrum. To optimize the efficiency and the best parameters of solar cells, numerical simulations of InGaN single junction and InGaN/Si double junction solar cells are conducted. The simulation modelling is important and indispensable for designing and fabricating InGaN single junction and InGaN/Si tandem solar cells. We changed the In composition and the thickness of the n- and p-InGaN to determine the short circuit current density (Jsc), open circuit voltage (Voc), fill factor (FF), conversion efficiency (η), and power maximum (Pmax).
First, for InGaN single junction solar cell, the Jsc, Voc, and FF have a strong dependence on the In composition. In composition is a critical parameter to determine Jsc, Voc, FF, and η of InGaN solar cells. In0.6Ga0.4N solar cell shows the maximum η ~ 22%. The band gap of In0.6Ga0.4N is 1.42 eV and is almost the same with GaAs. When the total layer thickness is greater than 500 nm, the absorption becomes saturated and the η increases smoothly. The simulation results are congruent with this trend.
Second, the p- and n-junction thickness and In composition of InGaN junction are the key point to determine the characteristics of InGaN/Si double junction solar cell. The current matching should be considered in the InGaN/Si double junction solar cells. The smaller Jsc in each junction determines the total Jsc of InGaN/Si double junction solar cell. The total Voc is the sum of the Voc in each junction of InGaN/Si double junction solar cell. Because the current matching affects the Jsc, the curves of the FF have some turning points. The η increases with increasing In content and with dramatically drops with a turning point. With 100 nm p-type InGaN junction, the In0.6Ga0.4N/Si p-n double junction solar cell has the maximum η ~37%. The enhancement of the optimal η of In0.6Ga0.4N/Si p-n double junction solar cell is ~68% higher than that of In0.6Ga0.4N single junction solar cell. The total thickness of InGaN junction must be less than 500 nm, or the most light is absorbed in the InGaN junction and Si junction can not work. The simulation results could provide the clues for optimizing the device structures and process conditions of InGaN single junction and InGaN/Si tandem solar cells.
Content
Acknowledgment…………………….…………………………………………I
中文摘要………………………………………………………………...……...II
Abstract…….…………………………………………………...………….…IV
Contents…………………..……………………………………..……………VI
Table Captions………………………………………………..…………….VIII
Figure Captions……………………………………………..………………..IX
Chapter 1 Introduction of InGaN Solar Cells………………………..………1
1.1 Introduction of III-Nitrides: InN, GaN, and InGaN……………………………………..1
1.2 The Basic Structure of Solar Cell……………………………………………..………...3
1.3 The Operation Principle of Solar Cell…………………………………………..………4
1.4 Current-Voltage (I-V) Curve of Solar Cell……………………………………..……….5
1.5 Solar Spectrum…………………………………………………………………..……...6
1.6 Introduction of InGaN p-i-n Solar Cell…………………………………………..……..6
1.7 Introduction of InGaN p-n Junction Solar Cell…………………………………..……..8
1.8 Introduction of InGaN/GaN Multiple Quantum Well Solar Cell………………..……...9
Reference……………………………………………………………………………..….….10
Chapter 2 Theoretical Simulations: the Influence of the In Composition and Thickness on the Performance of InGaN n-p and p-n Junction Solar Cells:……………………………………………………………………………..….…25
2.1 Introduction of InGaN p-n Junction Solar Cells……………………………..………...25
2.2 Theoretical Modelling of Short Circuit Current Densities, Open Circuit Voltages, Fill Factors, Conversion Efficiencies, and Power Maximums of InGaN n-p and p-n Junction Solar Cells………………………………………………..………. …….. ………… 28
2.3 Simulation Results: The Influence of the In Composition and Thickness of the n- and p-InGaN on the Performance of InGaN n-p Junction Solar Cells……………...……...38
2.4 Simulation Results: The Influence of the In Composition and Thickness of the p- and n-InGaN on the Performance of InGaN p-n Junction Solar Cells……...………...…...42
2.5 Summary ……………………………………………………………………..……….44
Reference………………………………………………………………………..…………..46
Chapter 3 Theoretical Simulations : the Influence of the In Composition and Thickness on the Performance of InGaN/Si p-n Double Junction Solar Cells :…………………………………………………………………….…… 76
3.1 Introduction of InGaN/Si p-n Double Junction Solar Cells……………………………..76
3.2 Theoretical Modelling of Short Circuit Current Densities, Open Circuit Voltages, Fill Factors, Conversion Efficiencies, and Power Maximums of InGaN/Si p-n Double Junction Solar Cells………………………………………………………….………….80
3.2.1 The Minority Carrier Concentration and Current Density in the p- and n-layers of the InGaN p-n Junction……………………………………………………...…..80
3.2.2 The Minority Carrier Concentration and Current Density in the p- and n-layers of the Si p-n Junction…………………………………………………………..…..85
3.2.3 Total Current density in the InGaN/Si p-n Double Junction Solar Cell…..………89
3.3 Simulation Results: The Influence of the In Composition and Thickness of the p-layes in the InGaN Junction on the Performance of InGaN/Si p-n Double Junction Solar Cells……………………………………………………………………………….……..93
3.4 Simulation Results: The Influence of the In Composition and Thickness of the n-laye in the InGaN Junction on the Performance of InGaN/Si p-n Double Junction Solar Cells……………………………………………………………………………………...98
3.5 Summary…………………………………………………………………………..……102
Reference……………………………………………………………………………………104
Chapter 4 Conclusions……………………………………..……………………………129
1.1M. S. Shur, and R. F. Davis, GaN-Based Materials and Devices (World Scientific, Singapore, 2004).
1.2Z. C. Feng, III-Nitride Semiconductor Materials (Imperial College Press, Singapore, 2006).
1.3L. Rigutti, Study of Transformation of Defect States in GaN- and SiC-Based Materials and Devices (Alma Mater Studiorum Università degli Studi di Bologna, 2009)
1.4H. Morkoc, Handbook of Nitride Semiconductors and Devices (Wiley-VCH, Chichester, 2008).
1.5J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, and J. W. Ager III, J. Appl. Phys. 94, 10 (2003).
1.6X. Zhang, X. Wang, H. Xiao, C. Yang, J. Ran, C. Wang, Q. Hou, and J. Li, J. Phys. D: Appl. Phys. 40, 7335 (2007).
1.7S. W. Feng, C. M. Lai, C. H. Chen, W. C. Sun, and L. W. Tu, J. Appl. Phys. 108, 093113 (2010).
1.8 R. Dahal, J. Li, K. Aryal, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 97, 073155 (2010).
1.9 J. Nelson, The Physics of solar Cells (Imperial College Press, UK, 2003).
1.10 H. J. Moller, Semiconductors for Solar Cells (Artech House, Boston, 1993).
1.11 P. Wurfel, Physics of Solar cells (Imperial College Press, London, 2009).
1.12 S. M. Sze, Semiconductor Device Physics and Technology 2nd Edition (John Wiley & Sons, USA, 2002)
1.13 T. Markvart and L. Castañer, Solar Cells: Materials, Manufacture and Operation (Elsevier Advanced Technology, Oxford, 2005)
1.14 J. R Lang, C. J. Neufeld, C.A. Hurni, S. C. Cruz, E. Matioli, U. K. Mishra, and J. S. Speck, Appl. Phys. Lett. 98, 131115 (2011).
1.15 B. R. Jampana, IEEE Electron Device Lett. 31, 1 (2010).
1.16 C. Yang, X. Wang, H. Xiao, J. Ran, C. Wang, G. Hu, X. Wang, X. Zhang, J. Li, and J. Li, Phys. Stat. sol. (a), 204, 12 (2007).
1.17 R.Dahal, J. Li, K. Aryal, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 97, 073115 (2010).
1.18 R. Dahal, B. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 94, 063505 (2009).
2.1 X. Zhang, X. Wang, H. Xiao, C. Yang, J. Ran, C. Wang, Q. Hou, and J. Li, J. Phys. D: Appl. Phys. 40, 7335 (2007).
2.2 E. F. Schubert, Light-Emitting Diodes second edition (Cambridge University Press, New York, 2006).
2.3 R. Dahal, J. Li, K. Aryal, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 97, 073155 (2010).
2.4 R. Dingle, D. D. Sell, S. E. Stokowski, P. J. Dean, and R. B. Zetterstrom, Phys. Rev. B. 3. 479 (1971).
2.5 J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager, III, E. E. Haller, Hai Lu, and W. J. Schaff, Phys. Rev. B. 66. 201403 (2002).
2.6 J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, Appl. Phys. Lett. 80, 4741 (2002).
2.7 A. Luque and S. Hegedus, Handbook of Photovoltaic Science and Engineering (Wiley, Hoboken, 2003).
2.8 T. T. Mnatsakanov, M. E. Levinshtein, L. I. Pomortseva, S. N. Yurkov, G. S. Simin, and M. A. Khan, Solid-State Electronics, 47, 111 (2003).
2.9黃惠良,曾擺亨,蕭錫鍊,周明奇,林堅楊,江雨龍,李威儀,李世昌,林唯芳,
太陽能電池 Solar cells (五南圖書出版股份有限公司,臺北,2008).
2.10 S. M. Sze, Semiconductor Device Physics and Technology 2nd Edition (John Wiley & Sons, USA, 2002).
2.11 J. Nelson, The Physics of solar Cells (Imperial College Press, UK, 2003).
2.12 F. Chen and A. N. Cartwright, Appl. Phys. Lett. 87, 212104 (2005).
2.13 M. S. Shur and R. F. Davis, GaN-Based Materials and Device (World Scientific, Singapore, 2004).
2.14 F. Chena, A.N. Cartwright, H. Lu, and W. J. Schaff, Physica E. 20 , 308 (2004).
2.15 Z. Z. Bandic, P. M. Bridger, E. C. Piquette, and T. C. McGill, Appl. Phys. Lett. 73, 22 (1998).
2.16 G. F. Brown, J. W. Ager III, W. Walukiewicz, and J. Wu, Solar Energy Materials & Solar Cells. 94 , 478 (2010).
2.17 V. Y. Davydov, A. A. Klochikhin, R. P. Seisyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, J. Aderhold, O. Semchinova, and J. Garul, Phys. Status Solidi B, 229 (2002).
3.1 L. Hsu and W. Walukiewicz, J. Appl. Phys. 104, 024507 (2008).
3.2 H. Hamzaoui, A. S. Bouazzi, and B. Rezig, Sol. Energy Mater. Sol. Cells. 87, 595 (2005).
3.3 T. Takamoto, E. Ikeda, and H. Kurita, J. Appl. Phys. 70, 381 (1997).
3.4 R. H. Horng, S. T. Lin, Y. L. Tsai, M. T. Chu, W. Y. Liao, M. H. Wu, R. M. Lin, and Y. C. Lu, IEEE Electron Device Lett. 30, 7 (2009).
3.5 Y. E. Romanyuk, D. Kreier, Y. Cui, K. M. Yu, J. W. Ager III, and S. R. Leone, Thin Solid Films. 517, 6512 (2009).
3.6 S. M. Sze, Semiconductor Device Physics and Technology 2nd Edition (John Wiley & Sons, USA, 2002).
3.7 F. Chen and A. N. Cartwright, Appl. Phys. Lett. 87, 212104 (2005).
3.8 M. S. Shur and R. F. Davis, GaN-Based Materials and Device (World Scientific, Singapore, 2004).
3.9 F. Chena, A.N. Cartwright, H. Lu, and W. J. Schaff, Physica E. 20 , 308 (2004).
3.10 Z. Z. Bandic, P. M. Bridger, E. C. Piquette, and T. C. McGill, Appl. Phys. Lett. 73, 22 (1998).
3.11 G. F. Brown, J. W. Ager III, W. Walukiewicz, and J. Wu, Solar Energy Materials & Solar Cells. 94 , 478 (2010).
3.12 X. Zhang, X. Wang, H. Xiao, C. Yang, J. Ran, C. Wang, Q. Hou, and J. Li, J. Phys. D: Appl. Phys. 40, 7335 (2007).
3.13 E. F. Schubert, Light-Emitting Diodes second edition (Cambridge University Press, New York, 2006).
3.14 V. Y. Davydov, A. A. Klochikhin, R. P. Seisyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, J. Aderhold, O. Semchinova, and J. Garul, Phys. Status Solidi B, 229, r1 (2002).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 2. 司晏芳 (2003) <花園裡的療癒力量>,《康健雜誌》,頁130-135
2. 4. 林淑芬 (1997) <藝術治療應用於青少年團體輔導Application of Group Art Therapy on Adolescents>,《吳鳳學報》,5,頁379-390
3. 10. 侯禎塘 (2003) <調適取向藝術治療>,《屏師特殊教育》,5,頁18-25
4. 11. 陳莉榛 (2002) <藝術治療在憂鬱症的介入效果>,《東南學報》,24 頁203-212
5. 13. 陳理哲 (2001) <休閒治療在特殊教育之應用>,《SIQ運動資訊季刊》,5,頁43-61
6. 14. 張俊彥、周孟慈 (2004) <園藝治療相關研究與發展之探討The Research and Development of Horticulture Therapy>,《造園季刊》,52頁45-54
7. 15. 張俊彥 (2001) <景觀生心理相關研究The Research of Landscape Psycho-Physiology>,《造園季刊》,41,頁53-58
8. 18. 傅靜慧 (1993) <音樂治療的理論基礎>,《當代醫學》20:1卷,頁93-95
9. 20. 葉龍吉、連廷嘉 (1999) <音樂治療的樣貌與團體應用的>,《諮商與輔導》,284,頁19-23
10. 25. 蔡奇睿 (2006) <水元素在環境中的展示效果與設計形式(1)>,《藝術欣賞》,2:10,頁48-55
11. 31. 韓可宗 (2001) <自然景觀對人們身心健康的益處Natural Landscapes and Human Health/Well-being>,《造園季刊》,41,頁13-18
12. 32. 謝旻諺、李健美、唐國峰 (2005) <休閒治療概述>,《運動健康與休閒研究集刊》,2,頁62-67