跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/01 20:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:呂書成
研究生(外文):Lu,Shu-Cheng
論文名稱:無線通訊應用之(Mg,Ba)(A0.05Ti0.95)O3(A=Zr,Sn)介電材料研製與天線設計之研究
論文名稱(外文):Fabrication of (Mg,Ba)(A0.05Ti0.95)O3 (A=Zr,Sn) Dieletric Materials and Design of Antenna for Wireless Communication Applications
指導教授:曾靜芳曾靜芳引用關係
口試委員:黃正亮尤正祺曾靜芳
口試日期:2012-07-24
學位類別:碩士
校院名稱:國立聯合大學
系所名稱:電子工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:129
中文關鍵詞:超寬頻天線介電材料
外文關鍵詞:Ultra-wideband (UWB) antennaDieletric materials
相關次數:
  • 被引用被引用:0
  • 點閱點閱:246
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
摘要
本論文設計具有帶拒功能的超寬頻單極天線,一開始為了實現實體天線採用平面印刷的方式製作超寬頻天線。
在以相同天線輻射體設計出兩種可產生帶拒頻帶的超寬頻天線,抑制頻帶於(5.25GHz ~ 5.85GHz)避免和WiMAX系統互相干擾,並觀察其天線參數與輻射場形。
為了研究天線與材料微波介電特性之間的關係、材料介電常數對於天線尺寸的影響,因此製備微波介電陶瓷材料(BaxMg1-x)(M0.05Ti0.95)O3[M = Zr、Sn],探討材料的微波介電特性,再從實驗結果中挑選出擁有可利用介電特性,來達到使天線尺寸縮小之目的。

Abstract
First, the ultra-wideband monopole antenna with band-notch function was designed in this paper. In order to achieve the antenna which using planar printed ultra-wideband antenna.
Then, there are two types of the ultra-wideband monopole antenna structure with band-notch function which has the same radiator was designed for suppression band (of 5.25GHz ~ 5.85GHz) to avoid interference with each other and WiMAX system, and to observe the antenna parameters and the radiation patterns.
In order to study the relationship between the antenna size and the material of the microwave dielectric properties, so as to prepare microwave dielectric ceramic materials (BaxMg1-x) (M0.05Ti0.95) O3 [M = Zr, Sn]. Explore the material's microwave dielectric properties, and then selected from the experimental results have dielectric properties can be used to achieve the purpose of the antenna size reduction.
目錄
致謝 I
中文摘要 II
Abstract III
目錄 1
第一章 序論 11
1.1 背景 11
1.2 論文架構 12
第二章 天線理論 13
2.1 傳輸線 13
2.2 偶極天線 18
2.3 鏡像原理 20
2.4單極天線 21
2.5 基本參數 22
2.6 超寬頻天線 26
第三章 介電材料基礎理論 27
3.1 微波介電材料 27
3.2介電特性 29
3.3 介電共振器原理 36
第四章 天線設計與分析 38
4.1 超寬頻單極天線設計 38
4.2 超寬頻單極帶拒天線A 40
4.3 超寬頻單極帶拒天線B 41
4.4 天線模擬與分析 41
4.5 天線實作方法 46
4.6 天線量測 46
4.7 實作結果 47
第五章 材料製備與實驗結果 48
5.1 (BaxMg1-x)(Zr0.05Ti0.95)O3材料製備 48
5.2 (BaxMg1-x)(Sn0.05Ti0.95)O3材料製備 50
5.3 (BaxMg1-x)(Zr0.05Ti0.95)O3材料微波介電特性量測與分析 52
5.4 (BaxMg1-x)(Sn0.05Ti0.95)O3材料微波介電特性量測與分析 56
5.5 (BaxMg1-x)(Zr0.05Ti0.95)O3與(BaxMg1-x)(Sn0.05Ti0.95)O3 59
5.6 微波介電材料應用於超寬頻天線 60
第六章 結論 62
圖目錄 64
圖2.1 微量長度傳輸線電壓與電流之定義 64
圖2.2微量長度傳輸線集總等效電路 64
圖2.3半波偶極天線連接不平衡同軸電纜示意圖 65
圖2.4 短偶極天線電流分布圖 65
圖2.5 短偶極天線場型 66
圖2.6 半波偶極天線與駐波 66
圖2.7 半波偶極天線電流分布圖 67
圖2.8 短偶極天線場型 67
圖2.9 平行完美導體的電流與其鏡像等效模型 67
圖2.10 垂直完美導體的電流與其鏡像等效模型 68
圖2.11 能量頻寬 68
圖3.1 極化機制 68
圖3.2 極化對能量關係圖 69
圖3.3 電磁波在不同介質中的現象 69
圖3.4 電磁波入射介質共振器產生全反射現象 69
圖3.5 橫向電場、橫向磁場之電磁場分佈 70
圖3.6 混合式電磁場之電磁場分佈 70
圖3.7 圓柱型共振器各種模式內外傳輸功率比 71
圖4.1 圓柱型結構 71
圖4.2 原型超寬頻單極天線 71
圖4.3 原型超寬頻單極天線S11 72
圖4.4 調整T1參數 72
圖4.5 超寬頻單極天線接地面槽孔 73
圖4.6 超寬頻單極天線A之U形槽孔 73
圖4.7 超寬頻單極天線A之U形槽孔角度 74
圖4.8 超寬頻單極天線B 74
圖4.9 調整L1參數 75
圖4.10 調整W1參數 75
圖4.11 調整WS1參數 76
圖4.12 調整WS2參數 76
圖4.13 調整槽孔角度θ 77
圖4.14 調整WS3參數 77
圖4.15 調整R參數 78
圖4.16 0度槽孔上移 78
圖4.17 15度槽孔上移 79
圖4.18 30度槽孔上移 79
圖4.19 45度槽孔上移 80
圖4.20 60度槽孔上移 80
圖4.21 30度槽孔﹐H=11.5mm ﹐調整WS3參數 81
圖4.22 45度槽孔﹐H=8.5mm ﹐調整WS3參數 81
圖4.23 60度槽孔﹐H=7.5mm ﹐調整WS3參數 82
圖4.24 30度槽孔﹐H=11.5mm ﹐微調WS3參數 82
圖4.25 45度槽孔﹐H=8.5mm ﹐微調WS3參數 83
圖4.26 60度槽孔﹐H=7.5mm ﹐微調WS3參數 83
圖4.27 0度槽孔電流分布圖 84
圖4.28 15度槽孔電流分布圖 84
圖4.29 30度槽孔電流分布圖 85
圖4.30 45度槽孔電流分布圖 85
圖4.31 60度槽孔電流分布圖 86
圖4.32 優化30度槽孔電流分布圖 86
圖4.33 優化45度槽孔電流分布圖 87
圖4.34 優化60度槽孔電流分布圖 87
圖4.35 帶線旋轉角度 88
圖4.36 超寬頻天線貼片上加多邊形帶線 88
圖4.37 調整Gc參數 89
圖4.38 調整Gs參數 89
圖4.39 調整Ls參數 90
圖4.40 調整L參數 90
圖4.41 超寬頻單極天線B之帶線 91
圖4.42 帶線旋轉角度示意圖 91
圖4.43 輻射貼片上帶線演進示意圖 91
圖4.44 優化模擬結果 92
圖4.45 優化超寬頻單極天線B電流分布圖 92
圖4.46 超寬頻單極帶拒天線A之模擬輻射場形-θ=30 93
圖4.47 超寬頻單極帶拒天線A之模擬輻射場形-θ=45 93
圖4.48 超寬頻單極帶拒天線A之模擬輻射場形-θ=60 94
圖4.49 超寬頻單極帶拒天線A之量測輻射場形-θ=30 94
圖4.50 超寬頻單極帶拒天線A之量測輻射場形-θ=45 95
圖4.51 超寬頻單極帶拒天線A之量測輻射場形-θ=60 95
圖4.52 超寬頻單極帶拒天線A之量測增益-θ=30 96
圖4.53 超寬頻單極帶拒天線A之量測增益-θ=45 96
圖4.54 超寬頻單極帶拒天線A之量測增益-θ=60 97
圖4.55 超寬頻單極帶拒天線B之模擬輻射場形 97
圖4.56 超寬頻單極帶拒天線B之量測輻射場形 98
圖4.57 超寬頻單極帶拒天線B之量測增益 98
圖4.58 超寬頻單極帶拒天線A之S11量測-θ=30 99
圖4.59 超寬頻單極帶拒天線A之S11量測-θ=45 99
圖4.60 超寬頻單極帶拒天線A之S11量測-θ=60 100
圖4.61 超寬頻單極帶拒天線B之S11量測 100
圖5.1 製備陶瓷材料之實驗流程圖 101
圖5.2 (Ba0.01Mg0.99)(Zr0.05Ti0.95)O3不同燒結溫度持溫時間4小時XRD 101
圖5.3 (Ba0.03Mg0.97)(Zr0.05Ti0.95)O3不同燒結溫度持溫時間4小時XRD 102
圖5.4 (Ba0.05Mg0.95)(Zr0.05Ti0.95)O3不同燒結溫度持溫時間4小時XRD 102
圖5.5 (Ba0.07Mg0.93)(Zr0.05Ti0.95)O3不同燒結溫度持溫時間4小時XRD 103
圖5.6 (Ba0.1Mg0.9)(Zr0.05Ti0.95)O3不同燒結溫度持溫時間4小時XRD 103
圖5.7 (Ba0.01Mg0.99)(Zr0.05Ti0.95)O3不同燒結溫度SEM圖 104
圖5.8 (Ba0.03Mg0.97)(Zr0.05Ti0.95)O3不同燒結溫度SEM圖 104
圖5.9 (Ba0.05Mg0.95)(Zr0.05Ti0.95)O3不同燒結溫度SEM圖 105
圖5.10 (Ba0.07Mg0.93)(Zr0.05Ti0.95)O3不同燒結溫度SEM圖 105
圖5.11 (Ba0.1Mg0.9)(Zr0.05Ti0.95)O3不同燒結溫度SEM圖 106
圖5.12 (Ba0.01Mg0.99)(Zr0.05Ti0.95)O3燒結溫度1210℃EDS 106
圖5.13 (Ba0.03Mg0.97)(Zr0.05Ti0.95)O3燒結溫度1240℃EDS 107
圖5.14 (Ba0.1Mg0.9)(Zr0.05Ti0.95)O3燒結溫度1300℃EDS 107
圖5.15 (BaxMg1-x)(Zr0.05Ti0.95)O3密度對燒結溫度之關係圖 108
圖5.16 (BaxMg1-x)(Zr0.05Ti0.95)O3介電常數對燒結溫度之關係圖 108
圖5.17 (BaxMg1-x)(Zr0.05Ti0.95)O3品質因數對燒結溫度之關係圖 109
圖5.18 (BaxMg1-x)(Zr0.05Ti0.95)O3溫度係數對燒結溫度之關係圖 109
圖5.19 (Ba0.01Mg0.99)(Sn0.05Ti0.95)O3不同燒結溫度持溫時間4小時XRD 110
圖5.20 (Ba0.03Mg0.97)(Sn0.05Ti0.95)O3不同燒結溫度持溫時間4小時XRD 110
圖5.21 (Ba0.05Mg0.95)(Sn0.05Ti0.95)O3不同燒結溫度持溫時間4小時XRD 111
圖5.22 (Ba0.07Mg0.93)(Sn0.05Ti0.95)O3不同燒結溫度持溫時間4小時XRD 111
圖5.23 (Ba0.1Mg0.9)(Sn0.05Ti0.95)O3不同燒結溫度持溫時間4小時XRD 112
圖5.24 (Ba0.01Mg0.99)(Sn0.05Ti0.95)O3不同燒結溫度SEM圖 112
圖5.25 (Ba0.03Mg0.97)(Sn0.05Ti0.95)O3不同燒結溫度SEM圖 113
圖5.26 (Ba0.05Mg0.95)(Sn0.05Ti0.95)O3不同燒結溫度SEM圖 113
圖5.27 (Ba0.07Mg0.93)(Sn0.05Ti0.95)O3不同燒結溫度SEM圖 114
圖5.28 (Ba0.1Mg0.9)(Sn0.05Ti0.95)O3不同燒結溫度SEM圖 114
圖5.29 (Ba0.01Mg0.99)(Sn0.05Ti0.95)O3燒結溫度1300℃EDS 115
圖5.30 (Ba0.03Mg0.97)(Sn0.05Ti0.95)O3燒結溫度1210℃EDS 115
圖5.31 (Ba0.05Mg0.95)(Sn0.05Ti0.95)O3燒結溫度1300℃EDS 116
圖5.32 (Ba0.07Mg0.93)(Sn0.05Ti0.95)O3燒結溫度1210℃EDS 116
圖5.33 (Ba0.1Mg0.9)(Sn0.05Ti0.95)O3燒結溫度1210℃EDS 117
圖5.34 (BaxMg1-x)(Sn0.05Ti0.95)O3密度對燒結溫度之關係圖 117
圖5.35 (BaxMg1-x)(Sn0.05Ti0.95)O3介電常數對燒結溫度之關係圖 118
圖5.36 (BaxMg1-x)(Sn0.05Ti0.95)O3品質因數對燒結溫度之關係圖 118
圖5.37 (BaxMg1-x)(Sn0.05Ti0.95)O3溫度係數對燒結溫度之關係圖 119
圖5.38 BMZT基板-基板尺寸 119
圖5.39 BMZT基板-貼片與接地面Y方向同時下降 120
圖5.40 BMZT基板-增加貼片與接地面Gap 120
圖5.41 BMZT基板-調整貼片半徑R 121
圖5.42 BMZT基板-調整接地面槽孔L1 121
圖5.43 BMZT基板-調整接地面槽孔W1 122
圖5.44 介電材料之DRA應用天線結構圖 122
圖5.45 介電材料之DRA應用天線S11量測 123
圖5.46 介電材料之DRA應用天線模擬場形 123
圖5.47 介電材料之DRA應用天線量測場形 124
圖5.48 介電材料之DRA應用天線增益 124
表目錄 125
表2.1 阻抗匹配與電壓駐波比 125
表4.1 天線結構參數 125
表4.2 頻寬與帶拒 125
參考文獻 126


參考文獻
[1] C. F. Tseng and H. J. Tang, “Effect of sintering aid on microwave dielectric properties of Mg(Zr0.05Ti0.95)O3 ceramics,” Journal of Alloys and Compounds Vol. 491, pp. 314–320, 2010.
[2] C. F. Tseng and C. H. Hsu, “A New Compound with Ultra Low Dielectric Loss at Microwave Frequencies", Journal of the American Ceramic Society, Vol. 92, pp. 1149-1152, 2009.
[3] E. Weber and F. Nebeker, “The Evolution of Electrical Engineering,” IEEE Press, Piscataway, New Jersey USA, 1994.
[4] Federal Communications Commission, “First Report and Order, Revision of Part 15 of The Commission's Rules Regarding Ultra-Wideband Transmission Systems,” FCC 02-48. Apr. 22, 2002.
[5] R. D. Richtmyer, “Dielectric Resonator,” Journal of Applied Physics, Vol. 10, pp. 391-398, 1939.
[6] O. Prytz and J. Tafto, “Accurate determination of orientation relationships between ferroelastic domains: the tetragonal to monoclinic transition in LaNbO4 as an example,” Acta Materialia, Vol. 53, pp. 297 - 302, 2005.
[7] 邱碧秀, “電子陶瓷材料,” 國立編譯館, 1988.
[8] D. Kajfez, “Computed Modal Field Distributions for Isolated DielectricResonators,” IEEE Trans. Microwave Theory Technology, Vol. 32, pp. 1609-1616, 1984.
[9] D. Kajfez, “Basic Principle Give Understanding of Dielectric Waveguides and Resonators,” Microwave System News, Vol. 13, pp. 152-161, 1983.
[10] M. Zhang, Y. Z. Yin, J. Ma, Y. Wang and W. C. Xiao, "A racket-shaped slot UWB antenna coupled with parasitic strips for band-notched application,” Progr. Electromagn. Res. Lett., Vol. 16, pp. 35–44, 2010.
[11] G. M. Zhang, J. S. Hong and B. Z. Wang, “Two novel band notched UWB slot antenna fed by microstrip line,” Progress In Electromagnetics Research, Vol. 78, pp. 209–218, 2008.
[12] K. Chung, J. Kim, and J. Choi, “Wideband microstrip-fed monopole antenna having frequency band-notched function,” IEEE Microwave and Wireless Components Letters, Vol. 15, No. 11, pp. 766–768, Nov. 2005.
[13] K. L. Wong, Y. W. Chi, C. M. Su, and F. S. Chang, “Bandnotched ultra wideband circular-disk monopole antenna with an arc-shaped slot,” Microwave Optical Technology Letters, Vol. 45, No. 3, pp. 188–191, May 2005.
[14] S. W. Su, K. L. Wong and F. S. Chang, “Compact printed ultra-wideband slot antenna with a band-notched operation,” Microwave Optical Technology Letters, Vol. 45, No. 2, pp. 128–130, Apr. 2005.
[15] Q. X. Chu and Y. Y. Yang, “A compact ultrawideband antenna with 3.4/5.5.5GHz dual band notched characteristics,” IEEE Trans. Antennas Propagation, Vol. 56, pp. 3637–3644, Dec. 2008.
[16] E. A. Daviu and M. C. Fabres, “Modal analysis and design of band-notched uwb planar monopole antenna,” IEEE Trans. Antenna and Propagation, Jan. 2010.
[17] J. H. Jung, N. Lee and J. K.Park, “Design of dual-band antenna with u-shaped open stub for wlan/uwb application,” Microwave and Optical Technology Letters, Vol. 51, pp. 284–89, Feb. 2009.
[18] S. Natarajamani, S. K. Behera and S. K. Patra, “Planar UWB Fractal Antenna with Band-Notched Characteristics,” International Conference on Electronic Systems, Jan. 2011.
[19] C. Y. Huang and W. C. Hsia, “Planar elliptical antenna for ultra-wideband communications,” Electronics Letters, Vol. 41, No. 6, pp. 296–297, 2005.
[20] M. J. Ammann and M. John, “Optimum design of the printed strip monopole,” IEEE Antennas and Propagation Magazine, Vol. 47, No. 6, pp. 59–61, 2005.
[21] G. Kumar and K. P. Ray, “Broadband Microstrip Antennas,” Artech House, Boston, 2003
[22] Y. Chawanonphithak and C. Phongcharoenpanich, “A Circular Microstrip Antenna with Tuning Stub above Wide-Slot Ground Plane for Band-Notched UWB Using Inverted-U Slot,” Proceedings of Asia-Pacific Microwave Conference, 2007.
[23] S. Sadat, M. Fardis, F. Geran and G. Dadashzadeh, "A compact microstrip square-ring slot antenna for UWB applications," Progress In Electromagnetics Research, Vol. 67, pp. 173–179, 2007.
[24] G. Z. Rafi and L. Shafai, “Wideband V-Slotted Diamond- Shaped Microstrip Patch Antenna,”Electronics Letters, Vol. 40, No. 19, 2004, pp. 1166 –1167.
[25] T. Huynh and K. F. Lee, “Single-layer single-patch wideband microstrip antenna,” Electron. Lett., Vol. 31, pp. 1310–1311, 1995.
[26] K. L. Wong and W. H. Hsu, “A broadband rectangular patch antenna with a pair of wide slits,” IEEE Antennas and Propagation Magazine, Vol. 49, pp. 1345–1347, 2001.
[27] W. H. Hsu, “Studies of broadband patch antennas with an air substrate,” PhD dissertation, Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan, 2001
[28] Z. Behjati and M. N. Azarmanesh, “Dual band notched semi-elliptical monopole antenna with two branch feed line,” Progress In Electromagnetics Research Letters, Vol. 12, 69-78, 2009.
[29] J. Jung, W. Choi and J. Choi, “A SmallWideband Microstrip-fed Monopole Antenna,” IEEE Microwave and Wireless Components Letters, Vol. 15, No. 10, Oct. 2005.
[30] B. Kasi, L. C. Ping and C. K. Chakrabarty, “A Compact Microstrip Antenna for Ultra Wideband Applications,” European Journal of Scientific Research, Vol. 67, No. 1 , pp. 45-51, 2011.
[31] M. Gouda and M. Y. M. Yousef, “Bandwidth Enhancement Techniques Comparison For Ultra Wideband Microstrip Antennas For Wireless Application,” Journal of Theoretical and Applied Information Technology, Vol. 35, No.2, Jan. 2012.
[32] R. Zaker, Ch. Ghobadi and J. Nourinia, “A Modified Microstrip-fed Two-step Tapered Monopole Antenna For Uwb And Wlan Applications,” Progress In Electromagnetics Research, Vol. 77, pp. 137–148, 2007.
[33] S. B. Cohn, “Slot line on a dielectric substrate,” IEEE Trans. Microw. Theory Techn., Vol. 17, No. 10, pp. 768–778, Oct, 1969.
[34] 汪建民,“陶瓷技術手冊(上),” 經濟部技術處, 1994.
[35] H. Ouchi and S. Kawashima, “Dielectric Ceramics for Microwave Application,” Japanese Journal of Applied Physics, Vol. 24, pp. 60-64, 1985.
[36] D. M. Pozar, “Microwave Engineering,” Addison-Wesley, New York, 1998.
[37] C. F. Tseng, “Relationships between Zr substitution for Ti and microwave dielectric properties in Mg(ZrxTi1-x)O3 ceramics,” Journal of Alloys and Compounds, Vol. 509, pp. 9447–9450, 2011.
[38] C. F. Tseng and C. H. Hsu, “Effect of sintering aid on microwave dielectric properties of Mg(Zr0.05Ti0.95)O3 ceramics,” Journal of Alloys and Compounds, Vol. 491, pp. 314–320, 2010.
[39] H. Yu, J. Cheng, W. Zhang, J. Liu and G. Xu, “Microwave dielectric properties of Mg(Zr0.05Ti0.95)O3-SrTiO3 ceramics,” Journal of Materials Science : Mater Electron, 2011.
[40] S. B. Desu and H. M. O'Bryan, “Microwave Loss Quality of BaZn1/3Ta2/3O3 Ceramics,” Journal of the American Ceramic Society, Vol. 68, pp. 546–51, 1985.
[41] R. B. Heady, J. W. Cahn, “Analysis of Capillary Forces in Liquid-Phase Sintering of Jagged Particles,” Journal of the American Ceramic Society, Vol. 7, pp. 406-409, 1970.
[42] M. H. Lin, Y. F. Chou and H. Y. Lu, “The rate-determining mechanism in the sintering of undoped non-stoichiometric barium titanate,” Journal of the European Ceramic Society, Vol. 20, pp. 517-526, 2000.
[43] L. A. Xue, Ph. D. Thesis, University of Leeds, 1987.
[44] J. K. Plourde, D. F. Linn, H. M. O’Bryan and J. Thomson, “Ba2Ti9O20 as a Microwave Dielectric Resonators,” Journal of the American Ceramic Society, Vol. 58, pp. 418-420, 1975.
[45] H. J. Lee, H. M. Park, Y. K. Cho, H. Ryu and Y. W. Sng, “Microstructural Observations in Barium Calcium Magnesium Niobate,” Journal of the American Ceramic Society, Vol. 83, pp. 2267-2272, 2000.
[46] K. Matsumoto, T. Iuga, K. Takada and H. Ichimura, “Ba(Mg1/3Nb2/3)O3 ceramics with ultra-low loss at microwave-frequencies,” IEEE International Symposium on Applications Ferroelectrics, 1986.
[47] B. Bay, N. Hansen, D. Hughes, and D. Kuhlmann-Wilsdorf, “Evolution of f.c.c. deformation structures in Polyslip,” Acta Metallurgica et Materialia, Vol. 40, pp. 205–219, 1992.
[48] K. S. Ryu, A. A. Kishk, “UWB Dielectric Resonator Antenna Having Consistent Omnidirectional Pattern and Low Cross-Polarization Characteristics,” IEEE Transactions On Antennas And Propagation, Vol. 59, No. 4, Apr. 2011.
[49] G. H. Jonker, W. Kwestroo, “The Ternary Systems BaO–TiO2–SnO2 and BaO-TiO2-ZrO2,”Journal of the American Ceramic Society, Vol. 41, pp. 390-394, 1958.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top