(3.210.184.142) 您好!臺灣時間:2021/05/16 02:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:邱小穎
研究生(外文):Hsiao-Ying Chiu
論文名稱:以流導電流儀結合光學式濁度計應用於混凝連續監測系統之研究
論文名稱(外文):Streaming current monitor combined with and Nephelometric Turbidity Meter in a online coagulation monitoring system
指導教授:鄭文伯鄭文伯引用關係
指導教授(外文):Wen-Po Cheng
口試委員:吳志超陳鶴文余瑞芳鄭文伯
口試委員(外文):Chi-Chao WuHo-Wen ChenRuey-Fagn YuWen-Po Cheng
口試日期:2011-07-07
學位類別:碩士
校院名稱:國立聯合大學
系所名稱:環境與安全衛生工程學系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:71
中文關鍵詞:流導電流值濁度標準偏差值濁度線上連續監測系統
外文關鍵詞:Treaming currentStandard deviationNephelometric turbidimeter monitoring system
相關次數:
  • 被引用被引用:1
  • 點閱點閱:322
  • 評分評分:
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:0
由於在淨水處理程序中,混凝/膠凝為淨水廠處理中一重要的過程,而混凝加藥的方式為淨水系統中一重要的環節,但尚缺乏有效的加藥控制方式,因此如何預測混凝效果已施予最佳的混凝劑量,使淨水處理程序中能夠有效快速判斷最佳混凝操作之條件。流導電流偵測儀藉由偵測水中懸浮顆粒並反應出顆粒表面電性又因能連續取樣,並針對不同狀況做立即反應,並將量測之電位值以流導電流 (SC) 表示;此外光學(散射)濁度計可即時線上偵測,散射光式 (Nephelopmetric) 濁度計量測到的每秒濁度值波動狀況符合卜瓦松分佈 (Poisson-distribution),而根據卜瓦松分佈的重要特性,濁度標準偏差,會因混凝過程中膠羽顆粒特性的改變產生不同程度的變化,由混凝過程中濁度變化可看出膠羽的形成大小,震幅小則表示顆粒為小顆粒,震幅大則膠羽顆粒越大,將量測到之濁度值變化程度以標準偏差值 (Standard Deviation, SD) 表示,以此概念,故本研究利用線上連續監測系統能長期監測之優點,並結合流導電流偵測儀能快速獲得粗略混凝劑量之優點,建立一線上電腦監控系統,在各種變動條件下,以實驗室配置之人工合成水樣 (包含不同濁度及有機物) 進行混凝連續流模場試驗中,評估連續式光學式濁度計結合流導電流偵測儀應用於自動控制混凝加藥之可行性。研究結果顯示,流導電流值與界達電位其兩者間有良好之線性關係。除此之外,腐植酸所帶之顏色會對濁度計光源會產生干擾,使得濁度震幅較大;相對地,水楊酸為無顏色之存在,故 SC 及 SD 其數值及穩定性均變化較小;另外也發現,當SC 值為零時並非一理想的混凝添加劑量,通常為過量加藥的狀況,因此在水質變動較大,無法立即決定最加藥量時,由流導電流 SC 值初步獲得初始加藥量,再藉由濁度 SD 值的量測,做加藥的微調。確實可利用 SC 值在加藥後可快速到達穩定的特性,在原水水質變化較大時先加藥至電中性之劑量 (SC=0) 決定初步加藥量,再由 SD 值的變化慢慢調整到最佳混凝劑劑量,以減少混凝劑的使用,並提高混凝濁度去除效果。
Coagulation/flocculation treatment is an important process for the water purification plant, but the lack of effective dosing control of coagulant. Therefore, how to predict the optimum dosing of coagulant effective and rapidly for the water treatment process, has become an important task. Streaming current monitor can detects suspended solid of water and the electricity of the particle. Owing to continuous sampling, and immediate response for different conditions, the measurement of the potential value represent as streaming current (SC). In addition, optical (scattering) turbidity meter can detect real-time online, scattering-type (Nephelopmetric) turbidity measurement of the turbidity in the second situation, and in line with Poisson distribution (Poisson-distribution). According to the Poisson distribution, the standard deviation of the turbidity can be change due to the properties change of floc particles in the coagulation process. Changes in turbidity by the coagulation process can be seen in the formation of floc size, small amplitude as small particles and large amplitude as large particles. The changes of turbidity are expressed in standard deviation (Standard Deviation, SD). In this study, the advantages of continuous online monitoring system to the long-term monitors combined with streaming current detection instrument can quickly obtain the dose of coagulant, to establish an on-line computer monitoring system. In the different conditions, use the synthetic water (containing different turbidity and organic matters), the coagulation tests for continuous flow was conducted. Assessment the feasibility of continuous optical turbidity meter combined with streaming current detection device using in automatic control of coagulant dosing. The results show that the streaming current and zeta potential between the good linear relationship. Beside, Humic acid would interfere with the turbidity meter, makes the larger amplitude. In contrast, salicylic acid without colors, so the stability of SC and SD values is small changes. This study confirmed the value of the SC can be used quickly after dosing to reach a stable condition. When the quality changes in raw water is high, the initial dosing to the neutral of the dose (SC = 0) was determined, and then slowly adjusted to the optimum coagulant dose by the SD value changes, to reduce the use of coagulant, and increase the turbidity removal of coagulation.
摘要 I
Abstract III
目錄 V
圖目錄 VIII
表目錄 XI
第一章 緒論 1
1.1 研究背景 1
1.2 研究目的 4
第二章 文獻回顧 6
2.1 混凝理論 6
2.2 水中有機物之特性及分類 10
2.2.1 水中有機物之來源 10
2.2.2 天然有機物之分類 11
2.3 流導電流偵測方法 13
2.3.1 流導電流偵測儀 (Streaming current monitor,SCM) 13
2.4 濁度計偵測方法 17
2.4.1 光纖膠羽偵測儀 (Photometric Dispersion Analyzer, PDA) 17
2.4.2 光學(散射光)式濁度偵測儀 19
2.4.3 濁度線上連續監測系統 (Nephelometric turbidimeter monitoring system , NTMS) 19
第三章 研究方法 27
3.1 實驗器材與設備 27
3.1.1 實驗材料 27
3.1.2 實驗設備 30
3.2 實驗流程及分析方法 35
3.2.1 混凝之連續流模場系統 35
3.2.2 光學式濁度分析 37
3.2.3 流導電流量測分析 38
3.2.4 殘餘濁度分析 38
第四章 結果與討論 45
4.1 流導電流讀值(SC)與界達電位(Zeta potential)之關係 45
4.2 混凝過程中流導電流讀值(SC)與濁度振幅標準偏差值(SD)之數值變化狀況探討 50
4.2.1 數值穩定所需時間之探討 50
4.2.2 以流導電流讀值(SC)及濁度振幅標準偏差值(SD)探討混凝最佳劑量 55
4.3 高濁度與低濁度其殘餘濁度的影響 61
第五章 結論與建議 64
5.1 結論 64
5.2 建議 65
參考文獻 66

Amirtharagjah, A. and O’Melia, C. R. (1990) Chap 6: Coagulation and Flocculation, Water Quality and Treatment 5th, American Water Works Association: 6.1.
Amirtharajah, A. and Mills, K. M., (1982) Rapid-mix Design for mechanisms of Alum Coagulation , Jour. AWWA., Vol. 74, No. 4:210-216.
Amirtharajah, A. and O’Melia, C. R., (1990) Chap 6: Coagulation Processes:Destabilization, Mixing and Flocculation, Water Quality & Treatment. 4th , AWWA: 269-365.
Biggs, C.A., and Lant, P.A. (2000) Activated sludge flocculation: on-line determination of floc size and the effect of shear, Water Research, 34: 2542-2550.
Blanco, A., Fuente, E. , Negro, C. and Tijero, J. (2002) Flocculation Monitoring: Focused Beam Reflectance Meaeurement as Measurement Tool, The Canadian Journal of Chemical Engineering, Volume 80.
Burgess, M. S., Curley, J. E., Wiseman, N. and Xiao, H. (2002) On-line optical determination of floc size. Part II: the effect of shear on floc Size, J. Pulp. Paper Sci, 28 (10): 323-326.
Burgess, M.S., Curley, J.E., Wiseman, N. and Xiao, H. (2002) On-line optical determination of floc size. Part I: principles and techniques, J. Pulp. Paper Sci, 28 (2): 63-65
Cardwell, Paul H., (1967) Technique of Streaming Current Detection and Amlications, Environmental Science and Technology, 1 (6): 482-487.
Chemtrac Systems, Inc, (1991) Electrokinetic Charge Analyzer Model No. ECA 2000 Instruction Manual , Chemtrac Systems, Inc.
Chemtrac Systems, Inc. (1991). Electrokinetic Charge Analyzer Model No. ECA 2000 Instruction Manual, Chemtrac Systems, Inc.
Cheng, W. P., Chang, J. N., Chen, P. H., Yu, R. F., Huang, Y. W., and Hsieh, Y. J.,(2010e) New method for monitoring floc formation to achieve optimal flocculation in water treatment plant, Environ. Eng. Sci., 27(6).
Cheng, W. P., Chang, J. N., Yu, R. F., Huang, Y. W., (2010g) Using the phenomena of turbidity fluctuation to analyze the flocs diameter in a coagulation pilot study, Desalination and Water Treatment, (SCI, In revision).
Cheng, W. P., Chen, W. Y., and Yu, R. F., (2010a) The relationship between particle size and turbidity fluctuations in coagulation process, Journal of Residuals Science & Technology, 7 (2):87-94.
Cheng, W. P., Chen, W. Y., Yu, R. F., (2010d) PAC Coagulation for Solid-Liquid Separation of High-Concentrated Algae Suspensions,Desalination and Water Treatment, 16: 290-297 (SCI).
Cheng, W. P., Chi F. H., Kao, Y. P., Yu, R. F., (2010f) Using On-line Turbidimeter Monitoring Technique in Evaluating Algal Suspension Removal, Environment Protection Engineering.
Cheng, W. P., Hsieh, Y. J., Chen, P. H., Yu, R. F., Huang, Y. W.,(2010b) ,Analyzing Coagulation Floc Characteristics by Turbidity Fluctuation ,Environ. Eng. Sci, (SCI, In revision).
Cheng, W. P., Hsieh, Y. J., Yu, R. F., Huang, Y. W., Wu, S. Y., (2010h) A characteristic study of the Polyaluminum Chloride (PACl) coagulation floc by using an on-line continuous turbidity monitoring system, Journal of the Taiwan Institute of Chemical Engineers ,(SCI, doi: 10.1016/j.jtice.2010.01.002) (SCI 2007 IF = 1.114).
Cheng, W. P., Kao, Y. P., and Yu, R. F., (2008) A Novel Method for On-Line Evaluation of Floc Size in Coagulation Process, Water Research, 42(10-11):2691-2697.
Cheng, W. P., Yu, R. F., Hsieh, Y. J., Wu, S. Y., Huang, Y. W., Chen, S. M.,(2010c) Optimizing Coagulant Demand by Nephelometric Turbidimeter Monitoring System (NTMS), Desalination and Water Treatment, 16:95-100.
Chou, S., Lin, S. and Huang, C. (1998) Application of optical monitor to evaluate the coagulation of pulp wastewater , Wat. Res, 37 (12),:111-119.
Dentel, S. K. and K.M.Kingery. (1989) Theoretical principles of streaming current detection ,Jour. Water Sci. Tech, 21:443-453.
Derjaguin, B. V. and Landau, L. D. (1941) Theory of stability of strong charge lyophobioc sols and of thd adhension of strong charged particles in solutions of electrolytes, Acta Physicochimca URSS,14:633-662.
Duan, J., Gregory, J., (2003) Coagulation by hydrolyzing metal salts, Advances in Colloid and Interface Science ,475-502.
Edwards, G.A. and Amirtharajah, A. (1985) Removing Color Caused by Humic Acids, Jour.AWWA, 77(3):50-57.
Gao, B. Y., Wang, Y., Yue, Q. Y., Wei, J. C., and Li, Q., (2008) The size and coagulation behavior of a novel composite inorganic-organic coagulant ,Separation and Purification Technology, 62: 546-552.
Gao, B. Y., Wang, Y., Yue, Q. Y., Wei, J. C., and Li, Q., (2008) The size and coagulation behavior of a novel composite inorganic-organic coagulant, Separation and Purification Technology, 62: 546-552.
Govoreanu, R., Seghers, D., Nopens, I., De Clercq, B., Saveyn, H., Capalozza,C., Van der Meeren, P., Verstraete, W., Top, E., Vanrolleghem, P.A. (2002) Linking floc structure and settling properties to activated sludge population dynamics in an SBR, In: Proceedings of the Third IWA World Water Congress, Melbourne, Australia, 7-12 April.
Gregory, J. (1985) Turbidity fluctuation in flowing suspension, J. Colloid Interface Sci,105:357-372.
Gregory, J. (2004) Monitoring floc formation and breakage, Water Sci. Technol, 50 (12): 163-170.
Gregory, J., (2009) Monitoring particle aggregation processes, Advances in Collid and Imterface Science, 147-148: 109-123.
Gregory, J., Nelson, David W. (1986) Monitoring of aggregates in flowing suspensions, Colloids and Surfaces, 18: 175-188.
Hahn, H. H. and Stumm, W. (1968) Kinetics of coagulation with hydrolyzed aluminum, J. Colloid Interface Sci., 28:133.
Huang, C. P. and Liu, C. B. (1996) Automatic control for chemical dosing in laboratory-scale coagulation process by using an optical monitor, Water Research, 30(8): 1924-1929.
Jarvis, P., Jefferson, B., Gregory, J., and Parsons, S. A. (2005) A review of floc strength and breakage, Water Research, 39: 3121-3137.
Jarvis, P., Jefferson, B., and Parsons, S. A. (2005) Measuring floc structural characteristics, Environmental Science and Bio/Tech, 4: 1-18.
John Gregory. (2009) Optical monitoring of particle aggregates , Journal of Environmental Sciences , 21:2-7.
Lamer, V. K. (1964) Coagulation symposium introduction, J. Colloid Interface Sci ,19:291.
Lamer, V. K. and Healy, T. W. (1963) Adsorption-flocculation reactions of macro-molecules at the solid-liquid interface, Pure Appl. Chem., 13:112.
Li, T., Zhu, Z., Wang, D.S., Yao, C.H., and Tang, H.X., (2007) The strength and fractal dimension characteristics of alum–kaolin flocs , Int. J. Miner. Process. ,82: 23-29.
Lin, J.L., Huang, C, Chin, C.J.M., and Pan, J.R., (2008) Coagulation dynamics of fractal fiocs induced by enmeshment and electrostatic patch mechanisms , Wa. Res., 42(2008) :4457-4466.
Packham, R. F. (1965) Some studies of the coagulation of dispersed clays with hydrolyzed salts, J. Colloid Interface Sci., 20:81.
Rattanakawin, C. (2005) Aggregate size distributions in sweep flocculation ,Songklanakarin J. Sci. Technol.,27: 1095-1101.
Rossi, L., Lubello, C., Poggiali, E., Griffini, O. (2002) Analysis of a clariflocculation process with a photometric dispersion analyzer (PDA 2000), Water Science Technology: Water Supply, 2(5-6):57-63.
Schnitzer, R.W. (1976) The Chemistry of Humic of Substance, Environmental Biogeochemistry, J.O. Nriagu, ed. Vol., Ann Arbor Science, Ann Arbor, MI.
Smith,C.V.,et al., (1969) streaming current technique for optimum coagulant dose , presented,ISA Symposium.
Swift, J.D., Simic, K., Johnston, R.R.M., Fawell, P.D., Farrow, J.B. (2004) Study of the polymer flocculation reaction in a linear pipe with a focused beam reflectance measurement probe, Int. J. Miner. Process.,73 (2-4):103-118.
Thurman, E. M. (1985) Amount of Organic Carbon in Natural Water, in Organic Geochemistry of Nature Water, Martinus Nijhoff/Dr. W. Junk Publishers, Dordrecht, the Netherlands:15-17.
Verwey, E. J. and Overbeek, G. Th. J. (1948) Theory of the stability of lyophobic colloid, Elserier, Amsterdam.
Werner, C., Zimmermann, R., Kratzmüller, T., (2001) Streaming potential and streaming current measurements at planar solid/liquid interfaces for simultaneous determination of zeta potential and surface conductivity , Colloids and Surfaces A: Physicochemical and Engineering Aspects, 192(1-3):205-213.
Chenga, W. P., Chi, F. H. , Chun Chang Li , Ruey Fang Yu . (2007) A study on the removal of organic substances from low-turbidity and low-alkalinity water with metal-polysilicate coagulants , Colloids and Surfaces A: Physicochem. Eng. Aspects 312 : 238-244.
Yan, M. , Wang, D.S. , Ni, J. , Qu , J., Chow, Christopher, W.K., Liu, Hailong (2008) Mechanism of natural organic matter removal by polyaluminum chloride: Effect of coagulant particle size and hydrolysis kinetics ,Wather Research, 42 (2008) :3361-3370.
Yu, J.F., Wang, D.S., Yan, M.Q., Ye, C.Q., Yang, M., Ge, X.P. (2007) Optimized Coagulation of High Alkalinity,Low Temperature and Particle Water: pH Adjustment and Polyelectrolytes as Coagulant Aids, Environ Monitor Assess, 131: 377-386.
Yukselen, M.A., Gregory, J. (2004) The reversibility of floc breakage Inter. J. Min. Process., 73: 251-259.
徐惠玲,(1995) 「從混凝行為探討硫酸鋁與有機物反應機制之研究」,碩士論文,國立交通大學環境工程系。
鄭雅伶,(2005) 「階段性加藥混凝-膠凝程序處理自來水之研究」,碩士論文,國立台灣科技大學化學工程系。
陳建中,(1993) 「流導電流儀在淨水混凝/膠凝過程中自動加藥控制之研究」,碩士論文,國立交通大學環境工程系。
陳俞蓁,(2002) 「混凝對表面水濁度去除之研究」,碩士論文,國立成功大學環境工程學系。
甘其銓,(1997) 「淨水廠濁度去除效能評估及混凝監測之研究-以豐原淨水場為例」,碩士論文,國立交通大學環境工程系。
劉嘉宏,(2007) 「混凝劑種類對低濁度原水混凝影響之研究」,碩士論文,國立成功大學環境工程學系。
胡靖宜,(2008) 「鋁水解物種對腐植酸混凝行為之影響」,碩士論文,國立交通大學環境工程系。
李俊昌,(2006) 「鋁矽複合式混凝劑之置備及其對低濁度有機原水混凝機制之研究」,碩士論文,國立聯合大學環境工程系。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. ˙ 余永章。〈從中共軍力成長論述台海不對稱戰爭對我之威脅〉。國防雜誌第20 卷第1 期(桃園:國防大學),2005 年1 月。
2. ˙ 《戰略安全研析》第14 期-第71 期。(台北:國立政治大學國際關係研究中心),2006 年6 月-2011 年3 月。˙ 曲傳宗。〈2010 年中共潛艦發展之研究〉。國防雜誌第22 卷第5期(桃園:國防大學),2007 年10 月。
3. ˙ 吳建德、朱家敏。〈中共攻勢防禦空軍建軍思維與台海安全〉。空軍學術雙月刊第596 期(台北:空軍司令部),2007 年2 月。
4. ˙ 李國榮。〈美軍強化關島基地對我國之影響〉。國防雜誌第21 卷第2 期(桃園:國防大學),2006 年4 月。
5. ˙ 桑治強。〈中共航天戰略發展與我國應採之策略〉。國防雜誌第22卷第6 期(桃園:國防大學),2007 年12 月。
6. ˙ 陳子平。〈2006 年中國的國防白皮書解讀-中共國防轉型與對台威脅〉。國防雜誌第22 卷第2 期(桃園:國防大學),2007 年4 月。
7. ˙ 鄭大誠,〈中共飛彈對國際之威脅〉,陸軍學術雙月刊第43 卷491期(桃園:陸軍司令部),2007 年2 月。
8. ˙ 鄭大誠。〈中共反介入能力之評估與展望〉。空軍學術雙月刊第605期(台北:空軍司令部),2008 年8 月。
9. ˙ 應紹基。〈美國「彈道飛彈防禦系統」與中共的可能因應措施〉。海軍學術月刊第39 卷第9 期(台北:海軍司令部),2005 年9 月。