跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/02/17 12:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:廖樹賢
研究生(外文):Liao, Shu-hsien
論文名稱:瓷磚廠研磨污泥及廢坯再利用製成瓷質磚與輕質磚可行性之研究
論文名稱(外文):Recycling polished porcelain tile sludge and scraps from tile factory: the feasibilities of fabricating porcelain tile and lightweight tile
指導教授:張坤森韓雄文
指導教授(外文):Chang, Kun-senHan, Hsiung-wen
口試委員:許志雄韓雄文江康鈺
口試委員(外文):Hsu, Chih-hsinugHan, Hsiung-wenChiang, kang-yu
口試日期:2011-06-29
學位類別:碩士
校院名稱:國立聯合大學
系所名稱:環境與安全衛生工程學系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:127
中文關鍵詞:拋光石英磚研磨污泥廢坯輕質磚回用
外文關鍵詞:Polished porcelain tileGrinding sludgeWaste tile scrapLightweight tileRecycling
相關次數:
  • 被引用被引用:4
  • 點閱點閱:884
  • 評分評分:
  • 下載下載:96
  • 收藏至我的研究室書目清單書目收藏:0
瓷磚廠之製程廢棄物一般係以污泥及廢坯最為常見,尤以拋光石英磚之拋光研磨製程產生研磨污泥廢棄物為大宗,唯因研磨污泥成分複雜及產出量大且難以回用於製程所致,故目前兩者多作為回填土或棄置掩埋場之用。
本研究針對瓷磚廠之拋光石英磚研磨污泥及陶質、石質廢坯進行回用於瓷質磚製程之分析研究。實驗結果共分四部份,第一部份為污泥及廢坯基本性質之探討。研磨污泥成分中粒徑分布於1–700 µm區間,介於4–60 μm存在係以磚坯粉屑為主,而100–700 μm則推測為碳化矽顆粒占大多數,且可燃分(濕基)占2.5 ± 0.8%及TGA 1,100 °C燒失量亦有約3.3%之重量損失,導因係與污泥成分中夾雜部份研磨片粉屑、SiC顆粒及其高溫易分解之S、Cl等物質有關。此外,經過篩 + 超音波(US)及過篩 + 超音波 + 臭氧(OZS)前處理污泥,亦可削減污泥> 45 µm之SiC顆粒,及降低燒成TGA重量損失約0.7−1.6%。而陶質、石質兩種廢坯之基本性質分析結果顯示,可燃分及TGA 1,100 °C燒失量皆< 1%,即所存在之易產氣及分解之物質較少,且廢坯成分中所含CaO、MgO及殘留晶相較研磨污泥多,使之回用成效較研磨污泥佳且較具耐火性。
第二部分為不同比例之前處理污泥及廢坯回用,結果顯示,隨研磨污泥添加比例10%增至30%除可促使磚體低溫燒成外,亦使氣孔率顯著增加且體密度降低。然而經二種前處理程序亦能減緩試片之膨脹現象並提升性質。其中,污泥回用率10%、溫度1,120−1,130 °C及回用率20−30%、溫度1,090−1,100 °C,分別可達CNS瓷質地磚、壁磚之規範及符合綠建材標準。此外,陶質及石質廢坯回用方面,以陶質廢坯(P)回用率20%、溫度1,140−1,180 °C及石質廢坯(S)回用率20%、溫度1,140−1,170 °C之二種燒成效果最佳,亦可符合相關標準,且燒成溫度範圍可達30−40 °C。
第三部份為不同物質添入混合研究,無害集塵灰10%添加雖然有助提升20%US污泥部份試片強度,但因集塵灰添加亦使液相燒結黏滯性增加,進而導致坯體顯著膨脹、燒失量及吸水率大幅上升。此外,5%US污泥添加雖可降低20%陶質廢坯回用之燒成溫度,但在高溫環境下因有污泥添加而促使試片膨脹,導致燒成範圍較原先20%陶質廢坯回用狹隘,故兩者研究成效皆不如預期,但卻可提升磚體機械強度。
最後則為製備輕質磚之應用,結果顯示在1,140 °C燒成溫度下,以外層US30−50% + 內層OS50−70%最符合輕質磚特性,且US50OS70之配比亦可使之燒成坯體體密度< 1 g/cm3及浮於水面。

Ceramic sludges and scraps, especially polished porcelain tile (PPT) sludge generated from PPT grinding process, are the major waste in tile factory. Since PPT sludge contains complex compositions hard for recycling, it is usually disposed for earth embankment and landfill.
In this research, PPT sludge, waste earthenware and stoneware were recycled for producing porcelain tile and four phases were developed for study. The first phase was basic physico-chemical properties analysis of PPT sludge and waste wares. The results show that particle size of PPT sludge ranged 1–700 µm; furthermore, the major components among 4–60 μm was PPT scraps and 100–700 μm was SiC particles. Combustible (wet basis) in PPT sludge was 2.5 ± 0.8wt.% and LOI of TGA (1,100 °C) was 3.3wt.%, revealing that weight losses of PPT sludge coming from the constituents of SiC, S, and Cl. Pretreatments of “screening + ultrasoning” sludge (as US) and “screening + ultrasoning + ozonation” sludge (as OZS) could remove SiC particles size larger than 45 µm and reduce weight losses of 0.7−1.6% in TGA analysis. In waste earthenware and stoneware, combustible in wares and LOI of TGA (1,100 °C) were less than 1wt.%, indicating more refractory CaO and MgO in wares than PPT sludge.
The second phase was reuses of pretreated PPT sludge and waste wares in different recycling ratios. As sludge ratio increased from 10% to 30%, the optimal firing temperature of tile products decreased, porosity increased, and bulk density decreased. It is also noted that pretreatment of PPT sludge could significantly reduce swelling phenomenon and raise strength of tile products. The tile products in operational conditions of 10% sludge fired at 1,120−1,130 °C and 20−30% sludge fired at 1,090−1,100 °C met CNS standards for porcelain floor tile and porcelain wall tile, respectively; moreover, both meeting the requirements of green building material label. In the recycling of waste earthenware and stoneware, the products in operational conditions of 20% earthenware (or pottery ware, as P) fired at 1,140−1,180 °C and 20% stoneware (as S) fired at 1,140−1,170 °C could not only meet some relative standards but also widen their optimal firing temperature range of 30−40 °C.
The third phase was the test of adding nonhazardous dust. A 10% dust addition could improve the strengths of some 20%US tile products, but dust also increased liquid viscosity during sintering process. Thus, tile products increases in swelling, LOI, and water absorption were found. In addition, a 5% dust addition could decrease firing temperature of 20% recycling earthenware, but also raised product swelling and narrowed their optimal firing temperature range.
The final phase was the test of fabricating lightweight tile. A sandwich structure of outer layers containing US30−50% and inner layer containing OS50−70% was attested as the optimal formation. Specially, a floating sample of US50OS70 with bulk density less than 1 g/cm3 was obtained.

摘要 I
Abstract III
目錄 V
圖目錄 IX
表目錄 XIII
符號索引 XIV

第一章 前言 1
1.1 研究緣起 1
1.2 研究對象 2
1.3 研究目的 2
1.4 研究流程 3
第二章 文獻回顧 5
2.1 瓷磚廢棄物及拋光石英磚製程之研磨污泥 5
2.1.1瓷磚基本性質與分類 5
2.1.2瓷磚製程 6
2.1.3 我國陶質、石質及瓷質磚之相關規範 9
2.1.4 瓷磚廠主要廢棄物產生源 11
2.1.5 研磨廢水處理程序及污泥基本性質 13
2.2 研磨污泥燒結製備輕質骨材(磚) 16
2.2.1輕質骨材 16
2.2.2 試體膨脹機制 16
2.2.3 輕質骨材相關製備技術 18
2.3 瓷磚相關燒結機制 19
2.3.1 燒結基本原理 19
2.3.2 高溫燒結機構 21
2.3.3 燒結反應階段 25
2.4 瓷磚燒成之影響因子 28
2.5 磚體組成對瓷磚體之燒結影響 29
2.6 研磨污泥處理機制 30
2.6.1 顆粒分離機制 31
2.6.2 超音波處理機制 31
2.6.1 臭氧處理機制 32
2.7 國內外相關研究 34
2.7.1廢棄物資源化製磚再利用 34
2.7.2 污泥資源化之應用 36
第三章 實驗材料與方法 38
3.1 研究材料 38
3.1.1 污泥及廢坯樣品來源 38
3.1.2 其他研究材料:無害集塵灰 38
3.2 實驗設備與物化分析 39
3.2.1 實驗設備 39
3.2.2 瓷磚廠廢坯及污泥之物化分析 43
3.2.3 其他分析儀器及設備 45
3.3污泥回用之實驗方法 46
3.3.1 污泥前處理 47
3.3.2 實驗配比 48
3.3.3粉料配方備製 50
3.3.4 生坯成型 50
3.3.5 燒結試驗 51
3.4 燒成性質測定 52
3.5 瓷磚/輕質磚相關規範 54
第四章 結果與討論 55
4.1 瓷磚廠廢坯及研磨污泥之物化特性分析結果 55
4.1.1 基本物化性質分析 55
4.1.2 粒徑分析 56
4.1.3 晶相分析 57
4.1.4 熱重與熱差分析 60
4.1.5 成分組成分析 64
4.2污泥及廢坯之單相燒結性質 67
4.2.1 研磨污泥燒結性質 67
4.2.2 陶質、石質廢坯之燒結性質 68
4.3 研磨污泥回用燒結瓷質磚之可行性 69
4.3.1 不同前處理污泥比例回用之燒成性質 69
4.3.2 不同比例前處理污泥回用之顯微結構 79
4.3.3 不同比例前處理研磨污泥回用之氣孔率及體密度 82
4.3.4 不同比例前處理污泥回用之晶相分析 83
4.4 陶質及石質廢坯回用燒結瓷質磚之可行性 86
4.4.1 不同廢坯比例回用之燒成性質 86
4.4.2 不同比例廢坯回用之顯微結構 93
4.4.3 不同比例廢坯回用之氣孔率及體密度 94
4.4.4 不同比例前處理廢坯回用之晶相分析 95
4.5 混合不同物質及研磨污泥添入回用燒結瓷質磚之可行性 98
4.5.1 無害化集塵灰添入研磨污泥回用之燒成性質 98
4.5.2 陶質廢坯添入研磨污泥回用之燒成性質 101
4.5.3混合不同物質及研磨污泥添入回用之顯微結構 105
4.6 不同比例研磨污泥回用燒結製備輕質磚 106
4.6.1研磨污泥回用製備輕質磚之燒成性質 106
4.6.2 研磨污泥回用製備輕質磚之顯微結構 110
4.7 瓷質磚及輕質磚燒成之最佳適用範圍評估 112
4.7.1 研磨污泥回用之適用範圍評估 112
4.7.2 陶質及石質廢坯回用之適用範圍評估 112
4.7.3 混合不同物質及研磨污泥添入回用之適用範圍評估 112
4.7.4 研磨污泥回用製備輕質磚之適用範圍評估 113
第五章 結論與建議 114
5.1 結論 114
5.2 建議 117
參考文獻 118


Junior, A. D. N., Hotza, D., Soler, V. C., and Vilches, E. S., “Influence of composition on mechanical behaviour of porcelain tile. Part II: Mechanical properties and microscopic residual stress,” Materials Science and Engineering: A, Vol. 527, pp. 1736–1743, 2010.

Bernardin, A. M., Silva, M. J. D., and Riella, H. G., “Characterization of cellular ceramics made by porcelain tile residues,” Materials Science and Engineering:A, Vol. 437, pp. 222–225, 2006.

ACI Committee 213, “Guide for structural lightweight aggregate concrete,” 1984.

Baldan, A., “Review Progress in Ostwald ripening theories and their applications to the γ′–precipitates in nickel–base superalloys Part II Nickel–base superalloys,” Journal of Materials Science, Vol. 37, pp. 2379–2405, 2002.

Lopez, A. G., Mascolo, G., Tiravanti, G., Pinto, A. C. D. and Passino, R., “Biodegradability Enhancement of Refractory Pollutants by Ozonation: a Laboratory Investigation on an Azo–Dyez Intermediate,” Water Science & Technology, Vol.38, pp.239–345, 1998.

Tucci, A., Esposito, L., Rastelli, E., Palmonari, C., and Rambaldi, E., “Use of soda–lime scrap–glass as a fluxing agent in a porcelain stoneware tile mix,” Journal of the European Ceramic Society, Vol. 24, pp. 83–92, 2004.

Langlais, B., Reckhow, D. A., and Brink, D. B., “Ozone in Water Treatment–Application and Engineering,” Lewis Publishers, 1991.

Vieira, C.M.F. and Monteiro, S.N., “Evaluation of a Plastic Clay from the State of Rio de Janeiro as a Component of Porcelain Body,” Revista Matéria, Vol. 12, pp. 1–7, 2007.

Riley, C. M., “Relation of Chemical Process to the Bloating Clay,” Journal of American Ceramic Scission, Vol. 34, pp. 121–128, 1951.

Richerson, D. W., “Modern Ceramic Engineering,” Marcel Dekker Inc., 1982.

Rambaldi, E., Esposito, L., Tucci, A., and Timellini, G., “Rceycling of polishing porcelain stoneware residues in ceramic tiles,” Journal of the European Ceramic Society, Vol. 27, pp. 3509−3515, 2007.

Melchiades, F. G., Rego, B. T., Higa, S. M., Alves, H. J., and Boschi, A. O., “Factors affecting glaze transparency of ceramic tiles manufactured by the ingle firing technique,” Journal of the European Ceramic Society, Vol. 30 pp. 2443–2449, 2010.

Raupp–Pereira, F., Ribeiro, M. J., Segadães, A.M., and Labrincha, J.A., “Extrusion and property characterisation of waste–based ceramic formulations,” Journal of the European Ceramic Society, Vol. 27, pp. 2333–2340, 2007.

Stathis, G., Ekonomakou, A., Stournaras, C.J., and Ftikos, C., “Effect of firing conditions, filler grain size and quartz content on bending strength and physical properties of sanitaryware porcelain,” Journal of the European Ceramic Society, Vol. 24 pp. 2357–2366, 2004.

Remmey, G. B., “Firing ceramics, ” World Scientific, 1994.

Kipourosa, G. J. and Sadoway, D. R., “ A thermochemical analysis of the production of anhydrous MgCl2,” Journal of Light Materials, Vol. 1, pp. 111–117, 2001.

Hua, I. and Hoffmann, M. R., “Optimization of Ultrasonic Irradiation as an Advanced Oxidation Technology,” J. Environ. Sci. Technol., Vol.31, pp. 2237–2243, 1997.

Martín–Márquez, J., Rincón, J.M., and Romero, M., “Effect of Firing Temperature on Sintering of Porcelain Stoneware Tiles,” Ceramics International, Vol. 34, pp. 1867–1873, 2008.

Bhatty, J. I., and Reidt, K. J., “Moderate Strength Concrete from Lightweight Sludge Ash Aggregate,” The International Journal of Cement Composites and Lightweight Concrete, Vol. 1 , pp. 179–187, 1989.

Amorós, J. L., Orts, M. J., García–Ten, J., Gozalbo, A., and Sánchez, E., “Effect of the green porous texture on porcelain tile properties,” Journal of the European Ceramic Society, Vol. 27, pp. 2295–2301, 2007.

Wu, J. M., and Huang, H. S., “Ultrasonic Destruction of Chlorinated Compounds in Aqueous Solution,” United States, 1993.

Hoigné, J. and Bader, H., “The role of hydroxyl radical reactions in ozonation processes in aqueous solutions,” Water Res., Vol. 10, pp. 377, 1976.

Staehelin, J., and Hogine, J., “Decomposition of Ozone in Water in the Presence of Organic Solutes Acting as Promotors and Inhibitors of Radical Chain Reactions,” Envir. Sci. Technol., Vol. 19, pp. 120–126. 1985.

Hoigne, J., “Chemistry of Aqueous Ozone and Transformation of Pollutants by Ozonation and Advanced Oxidation Processes,” The Handbook of Environmental Chemistry: Part C., Springer–Verlag Berlin Heidelberg, Vol.5, 1998.

Suslick, K. S., “Sonochemistry,” Science, Vol. 247, pp. 1439–1445, 1990.

Pimraksa, K., and Chindaprasirt, P., “Lightweight bricks made of diatomaceous earth, lime and gypsum,” Ceramics International, Vol. 35, pp. 471–478, 2009.

Chiang, K. Y., Chou, P. H., Hua, C. R., Chien, K. L., and Cheeseman, C., “Lightweight bricks manufactured from water treatment sludge and rice husks,” Journal of Hazardous Materials, Vol. 171, pp. 76–82, 2009.

Hojamberdiev, M., Eminov, A., and Xu, Y., “Utilization of muscovite granite waste in the manufacture,” Ceramics International, Vol. 37, pp. 871–876, 2011.

Ince, N. H., Tezcanli, G., Belen, R. K., and Apikyan, I. G., “Ultrasound as a catalyzer of aqueous reaction systems: the state of the art and environmental applications,” Appl. Catal. B: Environ.,Vol. 29, pp. 167–176, 2001.

Torres, P., Fernandes, H.R., Olhero, S., and Ferreira, J.M.F., “Incorporation of wastes from granite rock cutting and polishing,” Journal of the European Ceramic Society, Vol. 29, pp. 23–30, 2009.

Gennaro, R. D., Cappelletti, P., Cerri, G., Gennaro, M. D., Dondi, M., Graziano, S.F. and Langella, A., “Campanian Ignimbrite as raw material for lightweight aggregates,” Applied Clay Sciences, Vol.37, pp. 115–126, 2007.

Siddique, R. and Klaus, J., “Influence of metakaolin on the properties of mortar and concrete: A review,” Applied Clay Science, Vol. 43, pp. 392–400, 2009.

Rice, R. G., “Application of Ozone for Industrial Wastewater Treatment–A Review,” Ozone Science & Engineering, Vol.18, pp.477–515, 1997.

Xue, T., and Wang, Z. J. W., “Preparation of porous SiC ceramics from waste cotton linter by reactive liquid Si infiltration technique,” Materials Science and Engineering: A, Vol. 527, pp. 7294–7298, 2010.

Tomohiro, T., Yoshikazu, K., Akira, N., and Kiyoshi, O., “Preparation and properties of glass–ceramics from kaolin clay refining waste (Kira) and paper sludge ash,” Ceramics International, Vol. 32, pp. 789–796, 2006.

Loryuenyong, V., Panyachai, T., Kaewsimork, K., and Siritai, C., “Effects of recycled glass substitution on the physical and mechanical properties of clay bricks,” Waste Management, Vol. 29, pp. 2717–2721, 2009.

Wikipedia, Ozone, 2011.

Worrall, W. E., “Clays and ceramic raw materials: 2nd ed.” Springer, 1986.

Kingery, W. D., Bowen, H. K., and Uhlmann, D. R., “Introduction to ceramic: 2nd ed.,” New York: John Wiley and Sons, 1976.

程道腴、鄭武輝譯,“工業陶瓷”,徐氏基金會出版社,1992。

科學園區事業廢棄物再利用許可申請書,2010。

程道腴、鄭武輝,“窯業操作”,徐氏基金會出版社,第197–201頁,1992。

黃兆龍,“瓷磚工程品質控制概論”,營建世界期刊,第43期,第66−74頁,1985。

沈其文,“成型工藝基礎”,华中科技大學出版社,第303頁,2001。

中華民國國家標準,“陶瓷面磚總則”,編號:9737,經濟部標準檢驗局,2011。

中華民國國家標準,“陶質面磚檢驗法”,編號:3299,經濟部標準檢驗局,2010。

中華民國國家標準,“瓷質地磚、壁磚”,編號:9740、9742,經濟部標準檢驗局,2010。

中華民國陶業研究學會著,“陶瓷製造技術”,中華民國陶業研究學會,1992。

曾令可、金雪莉、劉艳春等編著,“陶瓷廢料回收利用技術”,北京:化學工藝出版社,2010。

吳宗翰,“拋光石英磚汙泥再利用研究”,國立聯合大學材料科學與工程學系,碩士論文,2010。

事業廢棄物管制資訊網,“全國事業廢棄物申報統計”,行政院環境保護署,2010。

顏聰,“人造輕質骨材混凝土之製造及工業化研究”,財團法人台灣營建中心,1993。

顏聰,“水庫淤泥輕質體材之產製及輕質骨材混凝土之產業化應用”,國科會大型三年產學合作計畫,2003。

顏聰、陳冠宏,“輕質骨材混凝土之力學性質”,輕質骨材混凝土會刊第1期,第27–41頁,2004。

瓷磚技術研討會,“探討影響人造輕質骨材之因素”,國立聯合大學瓷磚研究發展中心,2010。

龔洛書及柳春圃,“輕集料混凝土”,中國鐵道出版社,第82–87頁,1996。

陳豪吉、黃中和,“水庫淤泥輕質骨材產製”,輕質骨材混凝土會刊第1期,第17–26頁,2004。

余岳峰,“下水污泥焚化灰渣燒成輕質骨材特性之研究”,國立中央大學環工所,碩士論文,2000。

王昕、田进濤,“先進陶瓷製備工藝”,北京:化學工藝出版社,2009。

汪建民,“陶瓷技術手冊 (上)”,全華圖書,1994.

汪建民,“粉末冶金技術手冊 – 修訂版”,中華民國粉末冶金學會,1999。

洪盟峰,“水庫淤泥輕質骨材製造與高性能輕質混凝土工程性質之研究”,國立台灣科技大學營建工程系,博士論文,2005。

佐佐木宏,“エレクトロニクセラミツクス”,第23頁,1975。

潘德華、韓雄文、施並裕,“陶瓷材料實驗”,渤海堂文化事業公司,1996。

賴耿陽,“超音波工學理論實務:材料、機械、電機、化學、醫學、各個分野之應用製作技術 – 二刷一版”,復漢出版社,1999。

楊勝帆,“混和都市下水污泥及瓷質磚拋光研磨廢棄污泥再生利用為輕質骨材之研究”,國立聯合大學環境與安全衛生工程學系,碩士論文,2008。

李明潔,“臭氧對兩種產臭藍綠菌菌體破壞及其代謝物釋出之研究”,國立成功大學環境工程學系,碩士論文,2008。

范姜仁茂,“預臭氧程序提升綜合性工業廢水生物可分解性之研究”,國立中央大學環境工程研究所,碩士論文,2001。

李思儀,“化學混凝污泥回收應用於臭氧異相催化反應之觸媒備製與氧化研究”,私立逢甲大學環境工程與科學系,碩士論文,2009。

張坤森、韓雄文、許偉哲、黃仲帆,“水庫淤泥添加拋光瓷質磚廢泥燒製輕質骨材之研究”,中國鑛冶工程學會97年年會,2007。

張坤森、許偉哲、蕭辰翰、曾昭珽,“瓷磚研磨污泥顆粒分離技術之開發與研究”,2007廢棄物處理技術研討會,2007。

許偉哲,“石英磚研磨污泥回用與太陽能晶圓切削廢油分離研究”,國立聯合大學環境與安全衛生工程學系,碩士論文,2010。

張坤森、韓雄文、廖樹賢、劉昌旻、簡雅平、楊慶翔,“石英磚研磨污泥熟料回用及燒成性質分析之研究”,2009廢棄物處理技術研討會,2009。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top