跳到主要內容

臺灣博碩士論文加值系統

(44.200.27.215) 您好!臺灣時間:2024/04/13 18:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:魏毓哲
研究生(外文):Wei, Yu-Jhe
論文名稱:以室溫離子熔液萃取含銅鉻污染物
論文名稱(外文):Extraction of Copper and Chromium Pollutants with RTILs
指導教授:黃心亮
指導教授(外文):Huang Hsin-Liang
口試委員:王鴻博曾如玲
口試委員(外文):Wang, H. PaulTseng, Ru-Ling
口試日期:2011-07-18
學位類別:碩士
校院名稱:國立聯合大學
系所名稱:環境與安全衛生工程學系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:140
中文關鍵詞:離子熔液XANESEXAFSNMR
外文關鍵詞:ionic liquidsXANESEXAFSNMR
相關次數:
  • 被引用被引用:0
  • 點閱點閱:233
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要包含利用離子熔液(room temperature ionic liquids, RTILs)萃取金屬污染物,例如廢棄氧化銦錫(indium tin oxide, ITO)玻璃基板上之導電銅膜及在受鉻化物污染的土壤,達到以綠色溶劑將ITO回收再利用及土壤污染整治的目標。因此,主要目的是利用X光吸收近邊緣結構光譜 (X-ray absorption near edge structure, XANES)、X光延伸精細結構吸收光譜 (X-ray absorption fine structure, EXAFS)、穿透式電子顯微鏡(transmission electron microscopy, TEM)、X光繞射(X-ray diffraction, XRD)及核磁共振(nuclear magnetic resonance, NMR)研究以RTILs萃取銅及鉻污染物時之微細結構。
在298 K萃取5分鐘後,TEM顯示分別有80和90 nm的奈米金屬銅及α-碘化亞銅懸浮在RTIL ([C4mim][PF6], 1-butyl-3-methylimidazolium hexafluorophosphate)-I (I2 + I-)。由XANES光譜圖則發現在RTIL-I中,CuI (64%)及CuI2- (26%)為主要成分,因為80 nm的奈米銅由從廢棄ITO玻璃基板上剝落至RTIL-I並和I2及I-進行反應而形成,此外,RTIL的31P NMR 光譜顯示,[PF6]-和奈米顆粒(Cu 和CuI)會產生相互影響,RTIL-I的陰離子在萃取過程中扮演了重要的角色。
利用RTILs (1-butyl-3-methylimidazolium chloride ([C4mim][Cl])、1-butyl-3-methylimidazolium tetrafluoroborate ([C4mim][BF4])及1-butyl-3-methylimidazolium hexafluorophosphate ([C4mim][PF6]))萃取受鉻化物污染的土壤。XANES光譜圖顯示,在MCM-41、zeolite Y 或ZSM-5的Cr6+-HA(腐植酸和六價鉻螯合物)為RTILs的主要萃取物種,同時幾乎沒有發現Cr3+-HA(腐植酸和三價鉻螯合物)被RTILs所萃取,綜合[BF4]-的9F NMR光譜圖與氫鍵能力(hydrogen bond basicity),發現Cr6+-HA和[BF4]-形成氫鍵,使RTILs對Cr6+-HA具有高的萃取效率,此外,在RTILs萃取過程中,在RTILs能夠提高Cr6+-HA的還原作用,而還原生成的Cr3+-HA會由RTIL轉移至MCM-41、zeolite Y 或ZSM-5中。

The present work includes the studies of extraction of metal pollutants such as copper on scrap indium tin oxide (ITO) glass and chromium complexes in soil with RTILs (room temperature ionic liquids). Thus, the main objective of this work is to study the speciation of copper and chromium complex pollutants during extracting with RTILs by X-ray absorption fine structure (EXAFS) and X-ray absorption near edge structure (XANES) spectoscopies, transmission electron microscopy (TEM), X-ray diffraction (XRD), and nuclear magnetic resonance (NMR).
By TEM, 80 and 90 nm of nanosize Cu and α-CuI suspend in the a RTIL ([C4mim][PF6], 1-butyl-3-methylimidazolium hexafluorophosphate)-I (I2 + I-) during extraction at 298 K, respectively. By XANES, we found that CuI (64%) and CuI2- (26%) are the main compounds and formed because of reaction of I2, I- and nanosize Cu with grain size of 80 nm, isolating from scrap ITO glass, in the RTIL-I. Moreover, 31P NMR spectra of the RTIL show that interaction of nanoparticles (Cu and CuI) and [PF6]- anions may occur. During extracting, anion of RTIL-I should play an important role to trapping nanoparticles.
Experimentally, chromium complexes (chromium chelated with humic acid) in contaminated soils can be extracted with RTILs (1-butyl-3-methylimidazolium chloride ([C4mim][Cl]), 1-butyl-3-methylimidazolium tetrafluoroborate ([C4mim][BF4]), and 1-butyl-3-methylimidazolium hexafluorophosphate ([C4mim][PF6])). By XANES spectra, the Cr6+-HA (Cr6+ chelated with humic acid) from channels of MCM-41, zeolite Y or ZSM-5 is the main extracted compounds in RTILs. However, it is barely to observe that Cr3+-HA (Cr3+ chelated with humic acid) can be extracted into RTILs. Combined 9F NMR spectra and hydrogen bond basicity of [BF4]-, it seems that Cr6+-HA interacts with [BF4]- by hydrogen bonding. Therefore, high extracted efficiency of Cr6+-HA with RTILs is observed. Furthermore, reduction of Cr6+-HA has also enhanced in RTILs. Interestingly, migration of Cr3+-HA from RTILs into MCM-41, zeolite Y, and ZSM-5 is occured during extraction.

摘要 I
Abstract III
謝誌 V
目錄 VI
圖目錄 X
表目錄 XIII

第一章 前言 1
1-1 研究緣起 1
1-2 研究目的與內容 2
1-2-1 研究目的 2
1-2-2 研究內容 2

第二章 文獻回顧 5
2-1 液晶顯示器簡介 5
2-1-1 液晶顯示器材料與製程 10
2-1-2 液晶顯示器之回收技術 14
2-1-3 ITO的應用及使用率 21
2-2 土壤污染整治 25
2-2-1 土壤孔隙之影響 25
2-2-2 多孔材料 26
2-2-3 鉻在環境中的流佈 34
2-2-4 腐植酸對Cr(III)及Cr(VI)的影響 34
2-2-5 土壤污染整治技術 36
2-3 綠色化學 40
2-3-1 離子熔液之發展 41
2-3-2 離子熔液的特性 44
2-3-3 離子熔液在萃取上之應用 49
第三章 實驗材料、設備與方法 57
3-1 實驗樣品備製流程 57
3-1-1 離子熔液的合成 ([C4mim][PF6]、[C4mim][BF4]和[C4mim][Cl]) 57
3-1-2 MCM-41之合成 57
3-1-3 合成含鉻物種之MCM-41、ZSM-5及zeolite Y 58
3-1-4 X光吸收光譜之標準品備製 59
3-2 實驗方法 59
3-2-1 [C4mim][PF6]萃取廢棄氧化銦錫(ITO)玻璃基板上之銅膜 59
3-2-2 離子熔液([C4mim][PF6]、[C4mim][BF4]和[C4mim][Cl])萃取含六價鉻之MCM-41、ZSM-5及zeolite Y 59
3-2-3 離子熔液([C4mim][PF6]、[C4mim][BF4]和[C4mim][Cl])萃取含三價鉻之MCM-41、ZSM-5及zeolite Y 60
3-2-4 離子熔液([C4mim][PF6]、[C4mim][BF4]和[C4mim][Cl])萃取含三價鉻與六價鉻之MCM-41、ZSM-5及zeolite Y 60
3-3 實驗藥品及設備 61
3-3-1 實驗藥品 61
3-3-2 實驗設備 62
3-4 分析儀器 63
3-4-1 X-ray吸收光譜 63
3-4-2 穿透式電子顯微鏡 67
3-4-3 核磁共振 67
3-4-4 X光繞射儀 68
3-4-5 小角度散射 69
3-4-6 原子吸收光譜儀 69
3-4-7 比表面積分析儀 70

第四章 結果與討論 72
4-1 [C4mim][PF6]萃取廢棄ITO玻璃基板表面之導電銅膜 72
4-2 [C4mim][PF6]萃取廢棄ITO玻璃基板表面之導電銅膜後加熱 82
4-3 [C4mim][Cl]萃取在MCM-41及ZSM-5的六價鉻化合物之微細結構 93
4-4 [C4mim][PF6]、[C4mim][BF4]及[C4mim][Cl]萃取在zeolite Y的鉻化物之結構及物種變化 101
4-5 [C4mim][BF4]萃取在zeolite Y的三價鉻及六價鉻之結構變化 110

第五章 結論及建議 117
5-1 結論 117
5-2 建議 118

參考文獻 119
附錄 128
A-1 [C4mim][BF4]萃取在MCM-41的鉻化物之結構及物種變 化 128
A-2 [C4mim][PF6]萃取在MCM-41的鉻化物之結構及物種變 化 130
A-3 [C4mim][PF6]萃取在ZSM-5的鉻化物之結構及物種變化 132
A-4 [C4mim][BF4]萃取在ZSM-5的鉻化物之結構及物種變化 134
A-5 [C4mim][BF4]萃取在MCM-41的鉻化物(Cr6+及Cr3+)之結構及物種變化 136
A-6鉻在分子篩的濃度 138


Anastas, P. T., Kirchhoff, M. M. 2005 Origins, Current Status, and Future Challenges of Green Chemistry. Acc. Chem. Res. 35: 686-694.
Anderson, J. L., Ding, J., Welton, T., Armstrong, D. W. 2002 Characterizing Ionic Liquids on the Basis of Multiple Solvation Interactions. J. Am. Chem. Soc. 124: 14247-14254.
Anderson, R., Rasor, E., Ryn, F. V. 1999 Particle Size Separation via Soil Washing to Obtain Volume Reduction. J. Hazard. Mater. 66: 89-98.
Arslan, G., Edebali, S., Pehlivan, E. 2010 Physical and Chemical Factors Affecting the Adsorption of Cr(VI) via Humic Acids Extracted from Brown Coals. Desalination 255: 117-123.
Barakat, M. A. 1998 Recovery of Lead, Tin and Indium from Alloy Wire Scrap. Hydrometallurgy 49: 63-73.
Bradl, H. B. 2004 Adsorption of Heavy Metal Ions on Soils and Soils Constituents. J. Colloid Interface Sci. 277: 1-18.
Carvalho, W. A., Wallau, M., Schuchardt, U. 1999 Iron and Copper Immobilised on Mesoporous MCM-41 Molecular Sieves as Catalysts for the Oxidation of Cyclohexane. J. Mol. Catal. A-Chem. 144: 91-99.
Cheng, C. F., Alba, M. D., Klinowski, J. 1996 The Unit Cell of the Gallosilicate Mesoporous Molecular Sieve [Si,Ga]-MCM-41 is Significantly Smaller than in the Purely Siliceous [Si]-MCM-41. Chem. Phys. Lett. 250: 328-334.
De los rios, A. P., Hernandez-Fernandez, F. J., Lozano, L. J. 2010 Removal of Metal Ions from Aqueous Solutions by Extraction with Ionic Liquids. J. Chem. Eng. 55: 605-608.
Dietz, M. L., Dzielawa, J. A., Laszak, I. 2003 Influence of Solvent Structural Variations on the Mechanism of Facilitated Ion Transfer into Room-Temperature Ionic Liquids. Green Chem. 5: 682-685.
Evanko, C. R., Dzombak, D. A. 1997 Remediation of Metals Contaminated Soils and Groundwater. Ground-Water Remediation Technologies Analysis Center.
Fossi, P. 1981 Process for the Recovery of Indium. U.S. Patent 4372922.
Grimes, S., Lateef, H., Kewcharoenwong, P., Feinberg, B. 2009 Separation and Recovery of Cellulose and Lignin using Ionic Liquids: a Process for Recovery from Paper-Based Waste. J. Chem. Technol. Biotechnol. 84: 1818-1827.
Grove, J. H., Ellis, B. G. 1980 Extractable Chromium as Related to Soil pH and Applied Chromium. Soil Sci. Soc. Am. J. 44: 238-242.
Hortacsu, O., Keskin S., Akman, U. 2008 Soil Remediation via an Ionic Liquid and Supercritical CO2. Chem. Eng. Process. 47: 1693-1704.
Hsieh, S. J., Chen, C. C., Say, W. C. 2009 Process for Recovery of Indium from ITO Scraps and Metallurgic Microstructures. Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. 158: 82-87.
Huang, H. L., Wang, H. P., Eyring, E. M., Chang, J. E. 2009 Recovery of Nanosize Zinc from Phosphor Wastes with an Ionic Liquid. Environ. Chem. 6: 268-272.
Huang, M. H., Choudrey, A., Yang, P. 2000 Ag Nanowire Formation within Mesoporous Silica. Chem. Commun. 1063-1064.
Huddleston, J. G., Visser, A. E., Reichert, W. M. Willauer, H. D., Broker, G. A., Rogers, R. D. 2001 Characterization and Comparison of Hydrophilic and Hydrophobic Room Temperature Ionic Liquids Incorporating the Imidazolium Cation. Green Chem. 3: 156-164.
Huddleston, J. G., Willauer, H. D., Swatloski, R. P., Visser, A. E., Rogers, R. D. 1998 Room Temperature Ionic Liquids as Novel Media for 『Clean』 Liquid–Liquid Extraction. Chem. Commun. 1765-1766.
Jardine, P. M., Fendorf, S. E., Mayes, M. A., Larsen, I. L., Brooks, S. C., Bailey, W. B. 1999 Fate and Transport of Hexavalent Chromium in Undisturbed Heterogeneous Soil. Environ. Sci. Technol. 33: 2939-2944.
Jensen, M. P., Neuefeind, J., Beitz, J. V., Skanthakumar, S., Soderholm, L. 2003 Mechanisms of Metal Ion Transfer into Room-Temperature Ionic Liquids: the Role of Anion Exchange. J. Am. Chem. Soc. 125: 15466-15473.
Kano, J., Kobayashi, E., Tongamp, W., Miyagi, S., Saito, F. 2009 Non-Thermal Reduction of Indium Oxide and Indium Tin Oxide by Mechanochemical Method. J. Alloy. Compd. 484: 422-425.
Kano, J., Kobayashi, E., Tongamp, W., Saito, F. 2008 Reduction of Indium(III) Oxide to Indium through Mechanochemical Route. Chem. Lett. 37: 204-205.
Kozonoi, N., Ikeda, Y. 2007 Extraction Mechanism of Metal Ion from Aqueous Solution to the Hydrophobic Ionic Liquid, 1-Butyl-3-methylimidazolium. Mon. Chem. 138: 1145-1151.
Kozuh, N., Stupar, J., Gorenc, B. 2008 Reduction and Oxidation Processes of Chromium in Soils. Environ. Sci. Technol. 34: 112-119.
Krajewski, W., Hanusch, K. 1986 Process for Fluid-fluid Extraction of Gallium, Germanium or Indium from Liquid Solutions. U.S. Patent 4666686.
Kumpiene, J., Lagerkvist, A., Maurice, C. 2008 Stabilization of As, Cr, Cu, Pb and Zn in Soil using Amendments - a review. Waste Manage. 28: 215-225.
Lawniczak, S. L., Lecomte, P., Ehrhardt, J. J. 2001 Behavior of Hexavalent Chromium in a Polluted Groundwater: Redox Processes and Immobilization in Soils. Environ. Sci. Technol. 35: 1350-1357.
Lee, C. 2004 A Method for the Recycling of Scrap Liquid Crystal Display. Knowledge Bridge 45: 2-3.
Li, C. P., Xin, B. P., Xu, W. G. 2007 Study on the Extraction of Dyes into a Room-Temperature Ionic Liquid and Their Mechanisms. J. Chem. Technol. Biotechnol. 82: 196-204.
Li, J., Gao, S., Duan, H., Liu, L. 2009 Recovery of Valuable Materials from Waste Liquid Crystal Display Panel. Waste Manage. 29: 2033-2039.
Lin, K. L. 2007a The Effect of Heating Temperature of Thin Film Transistor-Liquid Crystal Display (TFT-LCD) Optical Waste Glass as a Partial Substitute Partial for Clay in Eco-Brick. J. Clean Prod. 15: 1755-1759.
Lin, K. L. 2007b Use of Thin Film Transistor Liquid Crystal Display (TFT-LCD) Waste Glass in the Production of Ceramic Tiles. J. Hazard. Mater. 148: 91-97.
Lin, Y. S., Lin, H. P., Mou, C. Y. 2004 A Simple Synthesis of Well-Ordered Super-Microporous Aluminosilicate. Microporous Mesoporous Mat. 76: 203-208.
Liu, J. S., Chen, H., Chen, X. Y., Guo, Z. L., Hu, Y. C., Liu, C. P., Sun, Y. Z. 2006 Extraction and Separation of In(III), Ga(III) and Zn(II) from Sulfate Solution using Extraction Resin. Hydrometallurgy 82: 137-143.
Livens, F. 1991 Chemical Reaction of Metals with Humic Materials. Environ. Pollut. 70: 183-208.
Mann, M. J. 1999 Full-Scale and Pilot-Scale Soil Washing. J. Hazard. Mater. 66: 119-136.
Pa, P. S. 2008a Effective Design of a Precision Removal Process of ITO Hin-Films. J. Appl Electrochem. 38: 645-651.
Pa, P. S. 2008b Precision Removal of ITO Layer using Plate-form Tool Design. J. Solid State Electrochem. 12: 1445-1451.
Pa, P. S. 2008c Reclaim System Design of Indium Tin Oxide Thin-Film Removal from Color Filters of Displays. Jpn. J. Appl. Phys. 47: 7444-7447.
Palmer C. D., Wittbrodt P. R. 1911 Processes Affecting the Remediation of Chromium-Contaminated Site. Environ. Health Perspect. 92: 25-40.
Park, D. H., Cheng, C. F., He, H., Klinowski, J. 1997 Synthesis and Characterization of Vanadosilicate Mesoporous Molecular Sieves MCM-41. J. Mater. Chem. 7: 159-162.
Park, J. C. 2008 The Removal of Tin from ITO-Scrap using Molten NaOH. Bull. Korean Chem. Soc. 29: 255-256.
Park, J. C. 2009 The Removal of Tin from ITO-Scrap via Ozonization. Bull. Korean Chem. Soc. 30: 3141-4142.
Park, K. S., Sato, W., Grause, G., Kameda, T., Yoshioka, T. 2009 Recovery of Indium from In2O3 and Liquid Crystal Display Powder via a Chloride Volatilization Process using Polyvinyl Chloride. Thermochim. Acta 493: 105-108.
Patti, A. F., Clarke, M., Scott, J. L. 2010 Ionic Liquid Extractions of Soil Organic Matter. 2010 19th World Congress of Soil Science, Soil Solutions for a Changing World.
Penchev, V., Minchev, C., Kanazirev, V. 1983 Thermochemical and Acidic Properties of the Zeolites Offretite, Pmega and ZSM-5 Zeolites 3: 249-254.
Qin, W. 2004 Method of Recovery Waste Liquid Crystal Display. CN1536394A. October 13th, 2004. (In Chinese)
Raimondo, M., Perez, G., Sinibaldi, M., De Stefanis, A., Tomlinson, A. A. G. 1997 Mesoporous M41S Materials in Capillary Gas Chromatography. Chem. Commun. 1343-4344.
Revelli, A. L., Mutelet, F., Jaubert, J.N. 2010 Extraction of Benzene or Thiophene from n-Heptane Using Ionic Liquids. NMR and Thermodynamic Study. J. Phys. Chem. 114: 4600-4608.
Steiner, M. S. 2006 Possible Ways for the Separation of Backlight Lamps. ReLCD-Workshop, Vienna, Austria.
Swatloski, R. P., Holbrey, J. D., Rogers, R. D. 2003 Ionic liquids are not always Green: Hydrolysis of 1-Butyl-3-Methylimidazolium Hexafluorophosphate. Green Chem. 5: 361-363.
Tomii, K., Tsuchida, H. 1980 Solvent Extraction Recovery Process for Indium. U.S. Patent 4292284.
Toth, A. H. 2005 The Kinetics of Cd, Pb and Cr Extraction from Artificially Polluted Soils. Microchem J. 79: 55-60.
Uyguner, C. S., Bekbolet, M. 2004 Evaluation of Humic Acid, Chromium (VI) and TiO2 Ternary System in Relation to Adsorptive Interactions. Appl. Catal. B-Environ. 49: 267-275.
Vedrine, J. C., Auroux, A., Bolis, V., Dejaifve, P., Naccache, C., Wierzchowski, P., Derouane, E. G., Nagy, J. B., Gilson, J.P., Van Hooff, J. H. C., Van Denberg, J. P., Wolthuizen, J. 1979 Infrared, Microcalorimetric, and Electron Spin Resonance Investigations of the Acidic Properties of the H-ZSM-5 Zeolite. J. Catal. 59: 248-262.
Visser, A. E., Swatloski, R. P., Reichert, W. M. Mayton, R., Sheff, S., Wierzbicki, A. Davis, J. H., Rogers, R. D. 2001 Task-Specific Ionic Liquids for the Extraction of Metal Ions from Aqueous Solutions. Chem. Commun. 135-136.
Wei, G. T., Lee, C. Y., Huang, C. H. 2010 Behaviors of Ionic Liquids in the Phase Transfer of Aqueous Metal Nanoparticles. Colloids and Surfaces A: Physicochem. Eng. Aspects 367: 24-30.
Wei, G. T., Yang, Z., Chen, C. J. 2003 Room Temperature Ionic Liquid as a Novel Medium for Liquid/Liquid Extraction of Metal Ions. Rev. Anal. Chem. 488: 183-192.
Wei, G. T., Yang, Z., Lee, C. Y., Yang, H. Y., Wang, C. R. C. 2004 Aqueous-Organic Phase Transfer of Gold Nanoparticles and Gold Nanorods using an Ionic Liquid. J. Am. Chem. Soc. 126: 5036-5037.
Wilkes, J. S. 2002 A Short History of Ionic Liquids—from Molten Salts to Neoteric Solvents. Green Chem. 4: 73-80.
Wittbrodt, P. R., Palmer, C. D. 1997 Reduction of Cr(VI) by Soil Humic Acids . Eur. J. Soil Sci. 48: 151-162.
Zhang, L., Wang, Y., Guo, X., Yuan, Z., Zhao, Z. 2009 Separation and Preconcentration of Trace Indium(III) from Environmental Samples with Nanometer-Size Titanium Dioxide. Hydrometallurgy 95: 92-95.
Zhao, H., Xia, S., Ma, P. 2005 Review use of Ionic Liquids as 『Green』 Solvents for Extractions. J. Chem. Technol. Biotechnol. 80: 1089-1096.
Zhilin, D. M., Kopplin, P. S., Perminova, I. V. 2004 Reduction of Cr(VI) by Peat and Coal Humic Substances. Environ. Chem. Lett. 2: 141-145.

光電科技工業協進會 Global Photonics Market and the Photonics Industry in Taiwan。http://www.pida.org.tw/newversion/homepage/2001new/english/overview.htm.
吳俊毅,陳偉聖,黃蘭芳,蕭庭哲,申永輝,蔡敏行 2010 LCD含銦廢料與廢液資源化處理技術之可行性評估。 工業污染防治 113: 13-49。
吳培堯,劉沛宏,許益源,陳怡君,楊致行 2007 鉻酸場址整治。 台灣土壤及地下水環境保護協會簡訊 22: 4-8。
李清華,楊昆龍 2003 廢液晶顯示器之資源回收處理裝置方法。 中華民國專利(No.177064)。
李清華,蔡尚林,洪崇欽,蕭孟官 2007 從廢玻璃基板中回收銦錫氧化物鍍層之方法。 中華民國專利 (No.I286953)。
李清華,吳宗勳,陳明俊,彭御賢 2004 廢液晶顯示器資源再生處理技術評析。 工業污染防治 22: 138-150。
李清華,馬雲風,林俊旭,林凱隆 2008 廢液晶顯示器資源再生處理技術評析。 工業污染防治 28: 81-102。
奇美電子 玻璃世代尺寸介紹。http://www.chimei-innolux.com/opencms/cmo/technology/Panel_Size_Evolution/?__locale=zh_CN
於迺文,林正錺 2001 土壤中重金屬含量的變化:(一)重金屬元素個論及其在土壤中的來源。 工業污染防治 78: 57-76。
林亭汝,沈永祺,洪仁財 2008 台灣TFT-LCD業經營績效之探討:以S-C-P 產業組織理論為基礎。 臺灣企業績效學刊 2: 1-29。
姜豊弦 2005 土壤粒徑與土壤重金屬分析方法之相關性研究。 逢甲大學環境工程與科學所碩士論文。
洪世章,呂巧玲 2001 台灣液晶顯示器產業之發展。 科技發展政策報導 SR9003: 173-183。
洪肇嘉,廖光裕,何佳祥,賴俊成 2002 重金屬污染場址整治方案之選擇原則及實例探討。 工業污染防治 84: 96-113。
范芳郡,郎朗,羅俊光,瞿港華 2008 利用三相系統-水/離子液體/超臨界流體二氧化碳萃取金屬。 化學 66: 21-31。
袁鶴齡 2006 我國TFT-LCD產業發展模式之探討。 科技發展政策報導 SR9502: 119-135。
張尊國 2002 台灣地區土壤污染現況與整治政策分析。 財團法人國家政策研究基金會 http://old.npf.org.tw/PUBLICATION/SD/091/SD-B-091-021.htm。
陳泊余 2006 離子液體的發展及其在電化學與其它領域的應用-獨特的溶劑系統。 化學 64: 235-258。
陳思穎 2009 光誘導不同分子大小及化學組成之腐植酸還原Cr(VI)。 國立中興大學土壤環境科學系碩士學位論文
陳淑貞 2008 我國發展兩兆雙星產業之展望。 行政院經濟建設委員會 203-217。
陳尊賢 2003 受重金屬污染農地土壤之整治技術與相關問題分析。 台灣土壤及地下水環境保護協會簡訊 9: 2-9。
黃朝義 2000 開拓LCD市場另一片天空。 Photonics Industry & Technology Development Association 30: 14-22。
黃舒瑜 2003 土壤重金屬0.1N HCl 萃取量與全量濃度之相關性研究。 逢甲大學環境工程與科學學系碩士論文。
黃瑞恩,胡憲倫 2002 液晶顯示器業之生態效益指標架構研究。 中華管理評論 5: 120-144。
董瑞安 1999 廢筆記型電腦回收處理技術之評估研究-LCD回收處理技術可行性評估。 行政院環保保護署。
蘇紹瑋,陳尊賢 2008 土壤清洗法整治重金屬污染土壤國內外最新研究與整治案例之回顧。 台灣土壤及地下水環境保護協會簡訊 27: 4-12。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top