跳到主要內容

臺灣博碩士論文加值系統

(44.200.168.16) 您好!臺灣時間:2023/04/02 01:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林建佑
研究生(外文):Jian-You Lin
論文名稱:摻雜劑對氧化矽鋅螢光薄膜特性之影響
論文名稱(外文):The Study on The Effect of Dopants on The Fluorescence Characterization of Zinc Silicate Thin Films
指導教授:蔡木村
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:材料科學與綠色能源工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:84
中文關鍵詞:旋轉塗佈矽酸鋅溶膠-凝膠光致發光
外文關鍵詞:Spin coatingZn2SiO4Sol-gelPhotoluminecsence
相關次數:
  • 被引用被引用:1
  • 點閱點閱:379
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
氧化矽鋅(或稱矽酸鋅,Zn2SiO4)係具有高亮度及高效率的螢光材料,可廣泛應用在照明和顯示設備上。本研究是利用溶膠-凝膠法製備高純度氧化矽鋅,並探討不同摻雜劑及熱處理條件,對其結構和發光特性之影響。
摻雜不同的活化劑,可形成透明的溶凝膠,經旋轉塗佈及熱處理可製備螢光薄膜。實驗結果顯示隨著摻雜劑量的改變,膠化的速率會有所不同。經熱處理溫度600 oC後,會產生Zn2SiO4結晶相,經800 oC熱處理後會形成α-Zn2SiO4及少量的β-Zn2SiO4,而β-Zn2SiO4於900 oC時可轉變為α-Zn2SiO4,隨著熱處理溫度的升高結晶性亦明顯上升。
PL分析結果顯示,發光強度會隨摻雜劑量的改變而有明顯的變化,摻雜鈦會在390~410 nm有藍光放射波峰;摻雜錳會在525 nm有綠光放射波峰,當錳、鈦共摻時,呈現藍光和綠光的放射波共存,發光強度和熱處理條件相關。
關鍵詞:旋轉塗佈、矽酸鋅、溶膠-凝膠、光致發光


Zinc silicate is one of the fluorescent materials with high brightness and high efficiency. It can be used widely in the lighting and display devices. High purity zinc silicate phosphors have been prepared by sol-gel method in this study. The effects of various dopant species and heat-treatment conditions on the structure and photoluminescence properties of thin films phosphors were investigated.
The transparent sols could be obtained when doped with different activators, phosphor thin films were formed after spin-coating and heat-treatments processes. Experimental results showed that the rate of gelation will change with dopant amounts. The Zn2SiO4 crystalline phase was observed after heat-treatment at 600 oC. On heating at 800 oC, α-Zn2SiO4 and β-Zn2SiO4 appeared. When the temperature increased to 900oC, the β-Zn2SiO4 phase will transform into α-Zn2SiO4. The crystallinity of Zn2SiO4 increased with the temperature.
According to the photoluminescence measurement, the emission intensity of films was different with various dopant concentrations. There are blue emission band peaking at 390 ~ 410 nm for Ti-doped phosphors, and green band centered at 523 nm for Mn-doped phosphors. When co-doped with Ti and Mn, both the blue and green peaks appeared simultaneously.
Keywords: Spin coating, Zn2SiO4, Sol-gel, Photoluminecsence.


目錄
中文摘要 ……………………………………………………………… i
英文摘要 ……………………………………………………………… ii
誌謝 …..………………………………………………………….. iii
目錄 ……………………………………………………………… iv
表目錄 …..………………………………………………………….. viii
圖目錄 …..………………………………………………………….. ix
第一章 緒論………..……………………………………………….. 1
1.1 前言………..……………………………………………….. 1
1.2 研究動機..………………………………………………….. 3
1.3 研究目的…..……………………………………………….. 4
1.4 矽酸鋅簡介….……………………………………………... 5
1.4.1 Zn2SiO4 發展…...………………………………………….. 5
1.4.2 Zn2SiO4 結構及性質…...………………………………….. 5
1.4.3 Zn2SiO4 之應用……...…………………………………….. 6
1.5 無機陶瓷發光材料之製備方法…………………………… 9
1.5.1 固態反應法 (Solid state method)………………………….. 9
1.5.2 沉澱法 (Precipitation method)…………………………….. 9
1.5.3 水熱法 (Hydrothermal method)………………………........ 10
1.5.4 噴霧熱分解法 (Spray pyrolysis method)……………..…… 10
1.5.5 微波輔助合成法 (Microwave assisted method)…………... 10
1.5.6 化學氣相沈積法 (Chemical vapor method)………………. 11
1.5.7 濺鍍法 (Sputtering method)……………………………….. 11
1.5.8 真空蒸鍍法 (Evaporation method)………………………... 12
1.5.9 溶膠-凝膠法 (Sol-gel method).............................................. 12
第二章 基礎理論及文獻回顧……………………………………… 13
2.1 光之簡介…………………………………………………… 13
2.1.1 光和電磁輻射……………………………………………… 13
2.1.2 可見光譜…………………………………………………… 13
2.1.3 紫外和紅外輻射…………………………………………… 14
2.2 發光原理…………………………………………………… 14
2.3 發光機制…………………………………………………… 15
2.4 史托克斯位移 (Stokes shift)………………………………. 15
2.5 缺陷發光 (Defect emission)……………………………….. 16
2.6 發光的種類………………………………………………… 17
2.6.1 光致發光 (Photoluminescencs)……………………………. 17
2.6.2 電致發光 (Electroluminescence)………………………….. 17
2.6.3 陰極射線發光 (Cathodoluminescence)…………………… 17
2.6.4 熱發光 (Thermaluminescence)…………………………….. 18
2.6.5 化學發光 (Chemiluminescence)…………………………... 18
2.6.6 生物發光 (Bioluminescence)……………………………… 18
2.6.7 聲致發光 (Sonoluminescence)…………………………….. 19
2.6.8 機械發光 (Mechanoluminescence)………………………... 19
2.7 發光材料之簡介…………………………………………… 19
2.7.1 螢光材料之組成…………………………………………… 19
2.8 溶膠-凝膠法………………………………………………... 21
2.8.1 溶膠-凝膠法原理………………………………………….. 21
2.8.2 影響溶膠-凝膠反應的因素……………………………….. 22
2.8.3 溶膠-凝膠法之優缺點……………………………………... 22
第三章 實驗方法與步驟…………………………………………… 31
3.1 實驗流程…………………………………………………… 31
3.2 分析儀器原理介紹……………………………………….... 33
3.2.1 結構分析…………………………………………………… 33
3.2.1.1 X光繞射儀 (XRD)……………………………………….. 33
3.2.1.2 霍式轉換紅外線光譜儀 (FT-IR)………………………….. 33
3.2.1.3 場發射掃描式電子顯微鏡 (FE-SEM)…………………….. 34
3.2.1.4 原子力顯微鏡 (AFM)……………………………………... 34
3.2.2 物性分析…………………………………………………… 35
3.2.2.1 質差與熱差分析儀 (TG/DTA)……………………………. 35
3.2.3 光學特性分析……………………………………………… 35
3.2.3.1 紫外光/可見光/近紅外光分光光度計 (UV-Vis-NIR)……. 35
3.2.3.2 螢光光譜儀 (FL)…………………………………………... 36
第四章 結果與討論………………………………………………… 40
4.1 溶膠-凝膠反應……………………………………………... 40
4.2 結構分析…………………………………………………… 45
4.2.1 XRD繞射與結晶性分析………………………………….. 45
4.2.2 質差與熱差分析…………………………………………… 52
4.2.3 FT-IR 分析………………………………………………… 54
4.3 微結構分析………………………………………………… 56
4.3.1 SEM & FE-SEM分析……………………………................ 56
4.3.2 AFM 原子力顯微鏡……………………………………….. 59
4.4 光學特性分析……………………………………………… 61
4.4.1 穿透光譜分析……………………………………………… 61
4.4.2 發光特性分析……………………………………………… 65
第五章 結論………………………………………………………… 75
參考文獻 ……………………………………………………………… 76
Extended Abstract
………………………………………………………………
80
簡歷 ……………………………………………………………… 85


[1] 張中太,張俊英,無機光致發光材料及應用,北京:化學工業出版社(2005).
[2] 楊素華,螢光粉在發光上的應用,科學發展,385期,(2002),p. 66.
[3] 神答茂,照明學會誌,72 (5),(1998),p. 23.
[4] E. N. Buting, “Phase eauilibrium in the system SiO2-ZnO”, J. Am. Ceram. Soc. 5 (1930) 5.
[5] http://webmineral.com/data/Willemite.shtml.
[6] 林明祥,“以溶膠-凝膠法製備矽酸鋅(Zn2SiO4)螢光體及其特性之研究”,國立虎尾科技大學光電與材料科技研究所碩士論文(2007).
[7] W. R. Blumenthal, D. S. Philips, J. Am. Ceram. Soc. 79 (1996) 1407.
[8] 賈佩雲,劉石明,“中國陶瓷”,37(5),(2001),p. 1.
[9] 繆春燕,李東平,“江西化工”,(4),(2003),p. 94.
[10] S. Bandyopadhyay, G. K. Paul, R. Roy, S. K. Sen, S. Sen, “Study of structural and electrical properties of grain-boundary modified ZnO films prepared by sol-gel technique”, Mater. Chem. Phys. 74 (2002) 83-91.
[11] G. L. Messing, S. C. Zhang, G. V. Jayanthi, J. Am. Ceram. Soc. 76 (1993) 2707.
[12] S. Alavi, J. D. Ghys, B. Caussat, “High temperature annealing of micrometric Zn2SiO4:Mn phosphor powders in fluidized bed” Mater. Res. Bull. 43 (2008) 2751-2762.
[13] S. N. Bai, J. S. Shieh, T. Y. Tsen, “Characteristic analysis of ZnO varistors made with spherical precipitation powders”, Mater. Chem. Phys. 41 (1995) 104-109.
[14] T. Minami, T. Miyata, I. Fukuda, J. Appl. Phys. 30(1B) (1991) L117-L119.
[15] 莊萬發,“超微粒子材料技術”,復漢出版社印行(1995).
[16] 曹茂盛,楊緒文,林振隆,“奈米材料導論”,學富文化公司(2004).
[17] 王世敏,許祖勛,傅昌,陳憲偉,“奈米材料原理與製備”,五南圖書(2004).
[18] 施敏(原著),黃調元(譯),“半導體元件物理與製作技術”,國立交通大學出版(2009).
[19] J. R. Coaton, A. M. Marsden, “Lamps and Lighting”, 4th Edition (1997).
[20] P. Atkins, D. D. Paula, “Physical Chemistry”, Oxford university press, 7th Edition (1997).
[21] A. Kital, “Luminescent Materials and Applications”, John Wiley & Sons, Ltd (2008).
[22] G. Blasse, B. C. Grabmaier, “Luminescent Materials”, Springer-Verlag, New York (1995).
[23] 劉如熹,王建源,石景仁,“白光發光二極體之螢光材料介紹”,光訊,第91期,(2001),p. 30.
[24] S. Shionoya. W. M. Yen, “Phosphor Handbook”, CRC press (1999).
[25] V. Singh, S. Watanabe, T. K. Gundu Rao, “Infrared luminescence, thermoluminescence and defect centres in Er and Yb co-doped ZnAl2O4 phosphor”, Appl. Phys. B. 98 (2010) 165-172.
[26] 劉如熹,紀喨勝,“紫外光發光二極體用螢光粉介紹”,全華圖書(2005).
[27] A. H. Kitai, “Solid State Luminescence”, Chapman & Hall press, Cambridge (1993).
[28] R. C. Ropp, “Luminescence and the Solid State” Elsevier Science Publisher, Chapter8 (1991).
[29] J. A. Deluca, “An Introduction to Luminescence in Organic Solids”, Journal of Chem. Educ. 57(8) (1980) 541-585.
[30] 王怡凱,曾俊元,蔡明憲,“溶凝膠在製作電子元件上之應用”,化工,46卷,5期(1999),p.95.
[31] 蔡木村,“以化學方法合成透光性MgO及SiO2陶瓷粉末之研究”,國科會研究報告(1996),p.11.
[32] http://www.che.tku.edu.tw/tkuchee/files/student/material/02.doc.
[33] D. W. Johnson, “Preparation of High-Silica Glasses from Colloidal Gels: II, Sintering”, J. Am. Ceram. Soc. Bulletin 66 (1983) 688-693.
[34] W. Zhang, W. Liu, C. Wang, “Characterization and tribological investigation of sol-gel Al2O3 and doped Al2O3 films”, J. Eur. Ceram. Soc. 22 (2002) 2869-2876.
[35] 楊家銘,奈米孔洞材料之物理吸脫附分析,科儀新知,26期(2005),p.32-38.
[36] 廖聖茹、黃依蘋、林仁章、黃瑞呈,“多孔性奈米材料比表面積/孔隙度檢測技術”,工業材料190期(2002),p.121-122.
[37] R. S. Yu, C. J. Lu, D. C. Tasi, S. C. Liang, F. S. Shieu, “Phase Transformation and Optoelectronic Properties of p-Type CuAlO2 Thin Films”, J. Electrochem. 1549 (2007) 838-843.
[38] C. Y. Tsay, H. C. Cheng, Y. T. Tung, W. H. Tuan, C. K. Lin, “Effect of Sn-doped on microstructure and optical properties of ZnO thin films deposited by sol-gel method”, Thin Solid Films 517 (2008) 1032-1036.
[39] H. Yang, J. Shi, M. Song, “A novel approach for preparation of Zn2SiO4: Tb nanoparticles by sol-gel-microwave heating”, J. Mater. Sci. 40 (2005) 6007-6010.
[40] H. Z. Zhang, C. H. Kam, Y. Zhou, X. Q. Han, S. Buddhudu, Y. L. Lam, C. Y. Chan, “Deposition and photoluminescence of sol-gel derived Tb3+: Zn2SiO4 flms on SiO2/Si”, Thin Solid Films 370 (2000) 50-53.
[41] M. Takesue, A. Suino, Y. Hakuta, H. Hayashi, R. L. Smith Jr, “Formation mechanism and luminescence appearance of Mn-doped zinc silicate particles synthesized in supercritical water”, J. Mater. Sci. 181 (2008) 1307-1313.
[42] Y. Kim, W. B. Im, K. S. Ryu, K. B. Kim, Y. H. Lee, J. S. Lee, “Combined Rietveld refinement of Zn2SiO4:Mn2+ using X-ray and neutron powder diffraction data”, Nucl. Instrum. Meth. B 268 (2010) 346-351.
[43] H. Hess, A. Heim, M. Scala, “Photoluminescence of Zinc Silicate doped with Al and Ti”, J. Electronchem. Soc. 130 (1983) 2443-2447.
[44] H. G. Jung, S. T. Myung, C. S. Yoon, S. B. Son, K. H. Oh, K. Amine, B. Scrosati, Y. K. Sun, “Microscale spherical carbon-coated Li4Ti5O12 as ultra high power anode material for lithium batteries”, Energy Environ. Sci. 4 (2011) 1345-1351.
[45] C. M. Lin, Y. Z. Tsai, J. S. Chen, “The microstructure and cathodoluminescence characteristics of sputtered Zn2SiO4: Ti phosphor thin films”, Thin Solid Films. 515 (2007) 7994-7999.
[46] V. Singh, V. K. Rai, S. Watanabe, T. K. Gundu Rao, I. Ledoux-Rak, H. Kwak, “Infrared emission and defect centres in Er and Yb codoped Y3Al5O12 phosphors”, Appl. Phys. A. 100 (2010) 1123-1130.
[47] M. T. Tsai, “Effects of hydrolysis processing on the character of forsterite gel fibers. Part I: preparation, spinnability and molecular structure”, J. Eur. Ceram. Soc. 22 (2002) 1073-1083.
[48] S. R. Lukic, D. M. Petrovic, M. D. Dramicanin, M. Mitric, Lj. Dacanin, “Optical and structure properties of Zn2SiO4: Mn2+ green phosphor nanoparticles obtained by a polymer-assisted sol-gel method”, Scripta Mater. 58 (2008) 655-658.
[49] J. Lin, D. U. Sanger, M. Mennig, K. Barner, “Sol-gel synthesis and characterization of Zn2SiO4: Mn poosphor films”, Mat. Sci. Eng. B64 (1999) 73-78.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top