跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/02/15 01:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王鴻彬
研究生(外文):Wang, Hong-Bin
論文名稱:鍺碲系列熱電材料特性與微結構之研究
論文名稱(外文):The properties and microstructure of GeTe based thermoelectric materials
指導教授:曹春暉朱旭山
指導教授(外文):Tsau, Chun-HueiChu, Hsu-Shen
口試委員:施漢章葉均蔚朱旭山曹春暉
口試委員(外文):Shih, Han C.Yeh, Jien-WeiChu, Hsu-ShenTsau, Chun-Huei
口試日期:2011-06-23
學位類別:碩士
校院名稱:中國文化大學
系所名稱:材料科學與奈米科技研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:93
中文關鍵詞:熱電材料TAGS熱壓法
外文關鍵詞:Thermoelectric materialTAGSHot-press
相關次數:
  • 被引用被引用:1
  • 點閱點閱:222
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
熱電材料是一種能將熱能與電能交互轉換的材料,可以用來製作熱電致冷器或是熱電發電器。而TAGS-85是中溫段的熱電材料,操作溫度約300℃至500℃。日前要提高熱電材料的性質通常以增加Seebeck係數、增加導電率、降低熱傳導係數,而TAGS-85本身具有高Seebeck係數和非常低的熱傳導係數,非常適合用來當熱電發電器的材料。
本論文材料主要為TAGS-85((AgSbTe2)15(GeTe)85),是一個以GeTe為主要合金與AgSbTe2混合的偽二元合金,將合金預熔之後以水淬、空冷、爐冷三種不同降溫速率獲得的合金,理論上水淬的結晶粒徑最小而爐冷最大。之後將合金磨成粉,粒徑為200μm,再以粉墨熱壓的方式製作樣品,熱壓溫度分冸使用350℃、400℃、450℃、500℃,再分冸持壓十分鐘、二十分鐘、三十分鐘。熱壓後的樣品,以X-ray繞射分析材料的結晶性、以光學顯微鏡和場發射掃瞄式電子顯微鏡觀察材料的表面型態、以硬度測試器量測樣品的硬度。在室溫至500℃進行Seebeck係數、導電率隨溫度變化的測量。
Seebeck係數隨著熱壓時間的增加而減少,在熱壓溫度450℃有最大值,導電率與合金的冷卻速率有較大的關係。
Thermoelectric material is a material which can transform heat to electric or transform electric to heat. It can be a thermo cooler or thermo generator. The related compounds (AgSbTe2)1-x(GeTe)x (known collec- tively by the acronym of their constituent elements as TAGS-X, where x designates the mole fraction of GeTe) were first reported in the1960s and have since been successfully deployed in radioisotope thermoelectric generators for deep space and remote applications. The composition (AgSbTe2)0.15(GeTe)0.85 (TAGS-85) was found to have the best combination of thermal and electrical transport properties and mechanical stability. The key feature of TAGS-x for thermoelectric applications is the very low thermal conductivity for the compositions TAGS-80 and TAGS-85.
The performance of materials for either of the above mentioned applications is governed by the thermoelectric figure of merit Z=S2/ρκ where S is the Seebeck coefficient, ρ is the electrical resistivity, and κ is the thermal conductivity. The dimension less figure of merit, ZT, can be obtained by multiplying Z by the absolute temperature (T). Higher Z values lead to more efficient materials and ultimately to more highly efficient devices. The thermal conductivity is too hard to get, so the Power factor = S2/ρ, also can be the thermoelectric figure of merit.
In my study I select TAGS-85 to be my research material, as the composition is varied from AgSbTe2 to GeTe, the transport properties vary smoothly, except for an anomalous double minimum in thermal conductivity at 80 and 85% GeTe. Other researchers have reported ZT values as high as 1.7 in the TAGS-80 composition, however, its inferior mechanical strength led to more widespread use of TAGS-85, (AgSbTe2)0.15(GeTe)0.85, as the preferred composition.
In many studies, they have different method to product the samples, such as different pressure, ingot cool down rates, different hot-press temperatures, hot-press time, particle size. So I use 200μm particle size, hot-press to product samples, the sample size is 8mm×8mm×15mm, the pressure is 38Mpa, I change hot-press temperature 350℃, 400℃, 450℃ 500℃, and hot-press time is 10min, 20min, 30min, and the ingot cool down rate have three rates, water quenching, air quenching, furnace quenching.
The Seebeck coefficients is relationship with hot-press time 10min>20min>30min, the Seebeck coefficients at hot-press temperature 450℃ have the highest value, the electrical resistivity with water quenching > air quenching > furnace quenching.
Why the Seebeck coefficients relationship with hot-press time? I think because of the grain boundary, the energy gap relationship with Seebeck coefficients, the electric need more energy to through the gap so the Seebeck coefficients have high value.
目錄
誌 謝 ................................................................................................. I
摘 要 ................................................................................................ II
Abstract ................................................................................................. III
目錄 .................................................................................................. V
圖目錄 .............................................................................................. VIII
表目錄 .............................................................................................. XIV
第一章 前言 ........................................................................................... 1
第二章 文獻回顧 ................................................................................... 4
2-1基礎原理 ........................................................................................ 4
2-1-1 Seebeck效應[1] ....................................................................... 4
2-1-2 Peliter 效應[2] ......................................................................... 6
2-1-3 Thomson 效應[10-11] ........................................................... 10
2.2粒徑對於Seebeck係數的影響[19,20] ..................................... 12
2.3 Seebeck係數與載子濃度之關係 .............................................. 14
第三章 實驗步驟 ................................................................................. 15
3-1實驗儀器設備 .............................................................................. 16
VI
3.1.1 搖擺爐 ................................................................................... 16
3.1.2 熱壓系統 ............................................................................... 16
3.1.3 熱電量測系統 ....................................................................... 16
3-2實驗流程 ...................................................................................... 20
3.2.1石英管鍍碳 ............................................................................ 20
3.2.2材料製備 ................................................................................ 20
3.2.3樣品製作 ................................................................................ 21
3.3熱電性質量測 .............................................................................. 22
3.3.1 Seebeck係數量測原理與方法 ............................................... 23
3.3.2 導電率量測原理與方法 ........................................................ 24
3.4 密度的量測 ................................................................................. 24
3.5 硬度的量測 ................................................................................. 25
第四章 結果與討論 ............................................................................. 27
4.1 熱電性質量測結果與分析 .......................................................... 27
4.1.1 Seebeck係數的量測 .............................................................. 27
4.1.2 導電度的量測 ....................................................................... 39
4.1.3 Power factor的計算 ............................................................... 46
4.2 結晶品質分析結果...................................................................... 53
4.2.1 電子顯微鏡分析結果 ............................................................ 53
4.2.2 EDS分析結果 ........................................................................ 64
4.2.3 X-ray繞射分析結果 .............................................................. 75
4.3 機械性質分析結果...................................................................... 83
4.3.1 密度量測結果 ....................................................................... 83
4.3.2 微硬度量測結果 ................................................................... 86
第五章 結論 ......................................................................................... 88
參考文獻 ............................................................................................... 90
圖目錄
圖2-1 Seebeck效應示意圖 .................................................................... 5
圖2-2 Seebeck現象原理 ........................................................................ 5
圖2-3 Peltier 效應示意圖 ...................................................................... 7
圖2-4 n-type熱電材料示意圖 ............................................................... 8
圖2-5 p-type熱電材料示意圖 ............................................................... 9
圖2-6 (a)在開放迴路單一對稱性溫度梯度(b)在封閉迴路單一導體中由Thomson效應產生的非對稱性溫度梯度 .................. 11
圖2-7 晶界能障對不同能量載子的過慮效應[19] ............................ 13
圖2-8 Seebeck係數、導電率、Power Factor 與載子濃度關係圖[21] ................................................................................................. 14
圖3-1 搖擺爐 ....................................................................................... 17
圖3-2 五噸拉伸試驗機 ....................................................................... 18
圖3-3 加熱器與模具 ........................................................................... 18
圖3-4 溫度控制器 ............................................................................... 19
圖3-5 熱電量測系統 ........................................................................... 19
圖3-6 實驗流程圖 ............................................................................... 22
圖4-1在熱壓溫度350℃Seebeck係數與溫度的關係 ........................ 28
圖4-2在熱壓溫度400℃Seebeck係數與溫度的關係 ........................ 29
圖4-3在熱壓溫度450℃Seebeck係數與溫度的關係 ........................ 29
圖4-4在熱壓溫度500℃Seebeck係數與溫度的關係 ........................ 30
圖4-5 持壓十分鐘Seebeck係數與溫度的關係 ................................. 31
圖4-6 持壓二十分鐘Seebeck係數與溫度的關係 ............................. 31
圖4-7 持壓三十分鐘Seebeck係數與溫度的關係 ............................. 32
圖4-8 三種合金熱壓溫度350℃Seebeck係數與溫度的關係 ............ 33
圖4-9 三種合金熱壓溫度400℃Seebeck係數與溫度的關係 ............ 33
圖4-10 三種合金熱壓溫度450℃Seebeck係數與溫度的關係 .......... 34
圖4-11 三種合金熱壓溫度500℃Seebeck係數與溫度的關係 .......... 34
圖4-12 Seebeck係數與熱壓溫度關係 ................................................. 36
圖4-13 Seebeck係數與持壓時間的關係 ............................................. 36
圖4-14在熱壓溫度350℃導電度與溫度的關係 ................................ 40
圖4-15在熱壓溫度400℃導電度與溫度的關係 ................................ 40
圖4-16在熱壓溫度450℃導電度與溫度的關係 ................................ 41
圖4-17 在熱壓溫度500℃導電度與溫度的關係 ............................... 41
圖4-18持壓十分鐘導電度與溫度的關係 ........................................... 42
圖4-19持壓二十分鐘導電度與溫度的關係 ....................................... 43
圖4-20持壓三十分鐘導電度與溫度的關係 ....................................... 43
圖4-21三種合金熱壓溫度350℃導電度與溫度的關係 ..................... 44
圖4-22三種合金熱壓溫度400℃導電度與溫度的關係 ..................... 45
圖4-23三種合金熱壓溫度450℃導電度與溫度的關係 ..................... 45
圖4-24三種合金熱壓溫度500℃導電度與溫度的關係 ..................... 46
圖4-25 在熱壓溫度350℃Power factor與溫度的關係 ...................... 47
圖4-26 在熱壓溫度400℃Power factor與溫度的關係 ...................... 47
圖4-27 在熱壓溫度450℃Power factor與溫度的關係 ...................... 48
圖4-28 在熱壓溫度500℃Power factor與溫度的關係 ...................... 48
圖4-29持壓十分鐘Power factor與溫度的關係 ................................. 49
圖4-30持壓二十分鐘Power factor與溫度的關係 ............................. 49
圖4-31持壓三十分鐘Power factor與溫度的關係 ............................. 50
圖4-32三種合金熱壓溫度350℃Power factor與溫度的關係............ 50
圖4-33三種合金熱壓溫度400℃Power factor與溫度的關係............ 51
圖4-34三種合金熱壓溫度450℃Power factor與溫度的關係............ 51
圖4-35三種合金熱壓溫度500℃Power factor與溫度的關係............ 52
圖4-36水淬 350℃ 10m ..................................................................... 54
圖4-37水淬 350℃ 20m ..................................................................... 54
圖4-38水淬 350℃ 30m ..................................................................... 55
圖4-39水淬 400℃ 10m ..................................................................... 55
圖4-40水淬 400℃ 20m ..................................................................... 56
圖4-41水淬 400℃ 30m ..................................................................... 56
圖4-42水淬 450℃ 10m ..................................................................... 57
圖4-43水淬 450℃ 20m ..................................................................... 57
圖4-44水淬 450℃ 30m ..................................................................... 58
圖4-45水淬 500℃ 10m ..................................................................... 58
圖4-46水淬 500℃ 20m ..................................................................... 59
圖4-47水淬 500℃ 30m ..................................................................... 59
圖4-48空冷 350℃ 10m ..................................................................... 60
圖4-49空冷 400℃ 10m ..................................................................... 60
圖4-50空冷 450℃ 10m ..................................................................... 61
圖4-51空冷 500℃ 10m ..................................................................... 61
圖4-52爐冷 350℃ 10m ..................................................................... 62
圖4-53爐冷 400℃ 10m ..................................................................... 62
圖4-54爐冷 450℃ 10m ..................................................................... 63
圖4-55爐冷 500℃ 10m ..................................................................... 63
圖4-56水淬 熱壓溫度350℃ .............................................................. 76
圖4-57水淬 熱壓溫度400℃ .............................................................. 76
圖4-58水淬 熱壓溫度450℃ .............................................................. 77
圖4-59水淬 熱壓溫度500℃ .............................................................. 77
圖4-60水淬 持壓十分鐘 .................................................................... 78
圖4-61水淬 持壓二十分鐘................................................................. 78
圖4-62水淬 持壓三十分鐘................................................................. 79
圖4-63空冷 持壓十分鐘 .................................................................... 79
圖4-64爐冷 持壓十分鐘 .................................................................... 80
圖4-65熱壓溫度 350℃ 持壓十分鐘 ................................................. 80
圖4-66熱壓溫度 400℃ 持壓十分鐘 ................................................. 81
圖4-67熱壓溫度 450℃ 持壓十分鐘 ................................................. 81
圖4-68熱壓溫度 500℃ 持壓十分鐘 ................................................. 82
表目錄
表4-1 製程對Seebeck係數的變化..................................................... 37
表4-2 水淬350℃持壓十分鐘試片EDS定量結果 ............................ 65
表4-3 水淬350℃持壓二十分鐘試片EDS定量結果 ........................ 65
表4-4 水淬350℃持壓三十分鐘試片EDS定量結果 ........................ 66
表4-5 水淬400℃持壓十分鐘試片EDS定量結果 ............................ 66
表4-6 水淬400℃持壓二十分鐘試片EDS定量結果 ........................ 67
表4-7 水淬400℃持壓三十分鐘試片EDS定量結果 ........................ 67
表4-8 水淬450℃持壓十分鐘試片EDS定量結果 ............................ 68
表4-9 水淬450℃持壓二十分鐘試片EDS定量結果 ........................ 68
表4-10 水淬450℃持壓三十分鐘試片EDS定量結果 ...................... 69
表4-11 水淬500℃持壓十分鐘試片EDS定量結果 .......................... 69
表4-12 水淬500℃持壓二十分鐘試片EDS定量結果 ...................... 70
表4-13 水淬500℃持壓三十分鐘試片EDS定量結果 ...................... 70
表4-14 空冷350℃持壓十分鐘試片EDS定量結果 .......................... 71
表4-15 空冷400℃持壓十分鐘試片EDS定量結果 .......................... 71
表4-16 空冷450℃持壓十分鐘試片EDS定量結果 .......................... 72
表4-17 空冷500℃持壓十分鐘試片EDS定量結果 .......................... 72
表4-18 爐冷350℃持壓十分鐘試片EDS定量結果 .......................... 73
表4-19 爐冷400℃持壓十分鐘試片EDS定量結果 .......................... 73
表4-20 爐冷450℃持壓十分鐘試片EDS定量結果 .......................... 74
表4-21 爐冷500℃持壓十分鐘試片EDS定量結果 .......................... 74
表2-22 水淬合金各個樣品密度 .......................................................... 84
表2-23 空冷合金各個樣品密度 .......................................................... 85
表2-24 爐冷合金各個樣品密度 .......................................................... 85
表2-25 水淬合金各個樣品硬度 .......................................................... 86
表2-25 空冷合金各個樣品硬度 .......................................................... 87
表2-25 爐冷合金各個樣品硬度 .......................................................... 87
1. 黃振東“熱電發電在節能減碳上將扮演更積極的角色”工業材料雜誌286期 (P.108) 2010/10
2. 黃振東,謝慧霖“節能減碳潮流下之全球熱電發電技術發展”工業材料雜誌286期 (P.109-118) 2010/10
3. 許家展,黃振東,鐘秀瑩“中溫端熱電材料研究與發展”工業材料雜誌286期 (P.131-139) 2010/10
4. Seebeck, T. J., Magnetic polarization of metals and minerals, Abhandlungen der Deutschen Akademie der Wissenschafren zu Berlin, 265, 1822-1823.
5. Peltier, J. C., Nouvelles experiences sur la caloricite des courans electrique, Ann. Chim., LVl 371, 1834.
6. Bruce A. Cook A Xuezheng Wei A Joel L. Harringa Matthew J. Kramer, In-situ elevated-temperature TEM study of (AgSbTe2)15(GeTe)85 , J Mater Sci (2007) 42:7643–7646
7. S H Yang, T J Zhu, T Sun, JHe, S N Zhang and X B Zhao, Nanostructures in high-performance (GeTe)x(AgSbTe2)100.x thermoelec materials, Nanotechnology 19 (2008) 245707 (5pp)
8. James R.Salvador , J.Yang , X.Shi , H.Wang , A.A.Wereszczak , Transport and mechanical property evaluation of (AgSbTe2)1-x(GeTe)x(x= 0.80, 0.82,0.85,0.87,0.90), Journal of Solid State Chemistry 182 (2009) 2088–2095
9. A.J. THOMPSON, J.W. SHARP, and C.J. RAWN, Microstructure and Crystal Structure in TAGS Compositions, Journal of ELECTRONIC MATERIALS, Vol. 38, No. 7, 2009
10. Bridgeman, P. W., The Thermodynamics of Electrical Phenomena in Metals, Dover, New York, 1961, chap. 2.
11. Roesser, F., Thermoelectric Thermometry, J. Appl. Phys., 11, 388, 1940.
12. L. A. Kuznetsova, V. L. Kuznetsov, D. M. Rowe, Thermoelectric properties and crystal structure of ternary compounds in the Ge(Sn,Pb)Te-Bi2Te3 systems, Journal of Physics and Chemistry of Solids 61, pp1269-1274, 2000.
13. HYUN SOO SHIN, HEON PHIL HA, DOW BIN HYUN, JAE DONG SHIM and DONG HI LEE, THERMOELECTRIC PROPERTIES OF 25%Bi2Te3-75%Sb2Te3 SOLID SOLUTION PREPARED BY HOT-PRESSING METHOD, Phys. Chem Solids Vol58. No. 4. pp. 671-670. 1997
14. Kroger F. A., J. Phys. Chem. So1id.s 7,276 (1958).
15. Tsipin M. I. and Evdokimenko L. T. IX. An SSSP. Neorganicheskie Materiali, 19, (1973).
16. Schultz J. M., McHugh J. P. and Yiller W. A., J. Appl.Phys 33,2443 ( 1962).
17. Reed-Hill R. E. and Abbaschian R., Physicul Metalhug) Principles 3rd ed. p. 227 PWS-Kent Publishing Company, ( 1992).
18. Scherrer H. and Scherrer S.. Proc. qfl2th In/. Confiwtw on Thermoelectric Energy Conversion, Yokohama Japan (Ed. K. Matsuura). p. 90 Laboratoire Metallurgie Physique & Science des
Materiaux-Ecole des Mines Nancy ( 1993).
19. K. Kishimoto, M. Tsukamoto and T. Koyanagi, J. Appl. Phys., 92, 5331 (2002).
20. K. Kishimoto, K. Yamamoto and T. Koyanagi, Jpn. J. Appl. Phys., 42, 501 (2003)
21. D. M. Rowe, CRC handbook of thermoelectrics(CRC Press, Boca Raton 1995)p44.
22. Masaki Fujikane, Ken Kurosaki, Hiroaki Muta, Shinsuke Yamanaka, Electrical properties of α- and β-Ag2Te , Journal of Alloys and Compounds 387 (2005) 297–299
23. Hongan Ma, Taichao Su, Pinwen Zhu, Jiangang Guo, Xiaopeng Jia, Preparation and transport properties of AgSbTe2 by high-pressure and high-temperature, Journal of Alloys and Compounds 454 (2008) 415–418
24. Masaki Fujikane, Ken Kurosaki, Hiroaki Muta, Shinsuke Yamanaka, Thermoelectric properties of Ag8GeTe6, Journal of Alloys and Compounds 396 (2005) 280–282
25. Ying Pengzhan, Fu Hong, Chen Dongyong, Thermoelectric Properties of Ternary Alloy Ag0.405Sb 0.532Te Prepared by Spark Plasma Sintering, Rare Metal Materials and Engineering, Volume 39, Issue 4, April 2010
26. J.L. CUI, H. FU, Y.M. YAN, X.J. ZHANG, and D.Y. CHEN, Thermoelectric Properties of the Pseudobinary Alloy (Ag0.365Sb0.558Te)0.975(GeTe)0.025 Prepared by Spark Plasma Sintering, Journal of ELECTRONIC MATERIALS, Vol. 39, No. 9, 2010
27. M.Snykers, P.Delavignette, S.Amelinckx, THE DOMAIN STRUCTURE OF GeTe AS OBSERVED BY ELECTRON MICROSCOPY, Mat. Res. Bull. Vol. 7, pp. 831-840, 1972.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top