(3.80.6.131) 您好!臺灣時間:2021/05/17 02:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:江坤諭
研究生(外文):Jiang, Kun-yu
論文名稱:綠藻醣蛋白與其有機酸修飾物之分子性質與免疫剌激活性
論文名稱(外文):The molecular property and immunostimulatory activity of Chlorella sorokiniana glycoproteins and their modified products with certain organic acids
指導教授:賴鳳羲
指導教授(外文):Lai,Phoency
口試委員:林季千賴鳳羲張珍田蘇正德胡淼琳
口試委員(外文):Lin, Chi-chenLai,PhoencyChang, Chen-TienSu, Jeng-DeHu, Miao-Lin
口試日期:2011-05-27
學位類別:碩士
校院名稱:靜宜大學
系所名稱:食品營養學系
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:91
中文關鍵詞:巨噬細胞酯化反應醣蛋白綠藻免疫調節
外文關鍵詞:immunomodulationesterificationglycoproteinChlorella sorokinianamacrophage
相關次數:
  • 被引用被引用:1
  • 點閱點閱:409
  • 評分評分:
  • 下載下載:38
  • 收藏至我的研究室書目清單書目收藏:0
本研究旨在探討綠藻 (Chlorella sorokiniana) 之熱水可溶性醣蛋白 (WS) 、去澱粉熱水可溶性醣蛋白(WS-ds) 與其分子區分物和經特定有機酸(絲胺酸、半胱胺酸、麩胺酸、檸檬酸及抗壞血酸) 修飾的產物之分子性質與體外免疫調節活性。以切向流超過濾法 (tangential flow filtration; TFF)製備得分子區分物包括WS-F1 (分子量> 100 kDa)、WS-F2 (10-100 kDa)、WS-F3 (< 10 kDa)、WS-ds-F1、WS-ds-F2及WS-ds-F3。所得綠藻醣蛋白區分物之單糖組成皆以葡萄糖為主。以小鼠巨噬細胞(Raw264.7)為模式的免疫活性試驗結果發現,所探討的樣品中,WS-F1具有較佳促進巨噬細胞 (Raw 264.7) 生長之活性,在濃度5 μg/mL下剌激生長率可達269%。WS-F1與特定有機酸混合、經鹼化處理 (使發生酯化反應) 後中和,製備得WS-F1-酸修飾物的紅外線光譜 (FTIR) 顯示有 1050-1300 cm-1(C-O)與1690-1760 cm-1(C=C)之吸收峰以及醣類有關的吸收波峰3000-3500 cm-1(O-H)。修飾物中以 WS-F1-Serine (WS-F1-S)和WS-F1-Citric acid (WS-F1-C)具有較顯著促進巨噬細胞生長之活性,在100 μg/mL下分別達140% 和133%。測定WS-F1、WS-F1- S及WS-F1-C處理組的細胞激素含量發現,在樣品濃度100 μg/mL下,TNF-α生成量分別為505.1 ± 11.2 , 524.9 ± 6.4及491.6 ± 9.2 pg/ mL。而WS-F1與WS-F1-S在100 μg/mL下剌激IL-6生成量分別450.6 ± 10.7與211.5 ± 11.0 pg/mL。綜合上述,綠藻醣蛋白分子量大於100 kDa之區分具有最佳活化巨噬細胞增生與細胞激素分泌之能力,活性與劑量有關; serine與citric acid修飾可調整WS-F1對RAW 264.7細胞之體外免疫調節活性。
關鍵字: 綠藻、醣蛋白、酯化反應、巨噬細胞、免疫調節

This study was to investigate the molecular property and in vitro immunostimulatory effect of hot water extract (WS) and destarched WS (WS-ds) of Chlorella sorokiniana, and their molecular fractions as well as modified WS-F1 with a certain of organic acids (serine, cysteine, glutamic acid, ascorbic acid, and citric acid). The molecular fractions prepared by tangential flow filtration included WS-F1 (> 100 kDa), WS-F2 (10-100 kDa), WS-F3 (< 10 kDa), WS-ds-F1, WS-ds-F2, and WS-ds-F3. The monosaccharide compositions of all samples prepared were mainly glucose. The in vitro immunostimulatory effect using murine Raw264.7 cell model indicated that WS-F1 exhibited the highest proliferation effects (269% at 5 μg/mL) among the samples examined. By Fourier transform infrared spectroscopy (FTIR), the WS-F1 modified with certain organic acids via a process of mixing, alkalization, and neutralization, displayed characteristic absorption peaks at 1050-1300 cm-1(C-O), 1690-1760 cm-1(C=C) and 3000-3500 cm-1(O-H). Among the modified products, only WS-F1 modified with serine (WS-F1-S) and citric acid (WS-F1-C) promoted Raw 264.7 cell proliferation significantly (140% and 133%, respectively, at 100 μg/mL). The WS-F1、WS-F1-S、WS-F1-C stimulated significantly Raw 264.7 cells to secrete tumor necrosis factor-α (TNF-α) (505.1±11.2, 524.9±6.4, and 491.6±9.2 pg/ mL at 100 μg/mL). The WS-F1 and WS-F1-S stimulated Raw 264.7 cells to secrete significant amounts of interleukin-6 (IL-6) (450.6±10.7 and 211.5 ± 11.0 pg/mL at 100 μg/mL). In conclusion, C. sorokiniana fractions especially of a molecular weight >100 kDa exhibited excellent abilities in activating macrophage to proliferation and secreting cytokines TNF-α and IL-6, which were dose-dependent. Modification of serine and citric acid conditioned the in vitro immunostimulatory activity of WS-F1 on Raw 264.7 cells.
Keywords: Chlorella sorokiniana, glycoprotein, esterification, macrophage, immunomodulation

頁次
一 、前言……………………………………………………………………………………….1
二、文獻回顧…………………………………………………………………………………...2
1.綠藻的簡介及糖組成…………………………………………………………………...2
1.1綠藻簡介及糖組成………………………………………………………………….2
1.2綠藻營的營養性…………………………………………………………………….3
1.3綠藻萃取物分佈.……………………………………………………………………3
1.4綠藻水萃物免疫活性.………………………………………………………………7
1.5植化物化學修飾.……………………………………………………………………8
2.醣蛋白結構與生理活性………………………………………………………………...9
3.人體系統免疫概論... ………………………………………………………………….10
3.1非特異性免疫... …………………………………………………………………...10
3.2 體液免疫…...... …………………………………………………………………...11
3.3細胞激素特性. ………………………………………………………………….....12
3.3.1 IL-6 (interleukin 6,介白素 6) ……………………………………………....12
3.3.2 IL-10 (interleukin 10,介白素10) …………………………………………...12
3.3.3 IL-12 (interleukin 12,介白素12) …….………………..................................13
3.3.4 TNF (tumor necrosis factor,腫瘤壞死因子)………………………………....13
4. 膠體過濾層析...............................................................................................................15
5. 離子交換層析...............................................................................................................16
6. 絲胺酸、半胱胺酸、麩胺酸、抗壞血酸、檸檬酸...................................................18
7. 酯化反應......................................................................................................................19
三、材料與方法
3.1.流程………………………………………………………………………………..20
3.2.綠藻化學修飾……………………………………………………………………..21
3.2.1 實驗材料……………………………………………………………………...22
3.2.2 儀器設備……………………………………………………………………...23
3.3樣品製備
3.3.1破壁綠藻...…………………………………………………………………….23
3.4化學組成分析
3.4.1碘溶液試驗........................................................................................................23
3.4.2蛋白質測定(氮分析儀)………………………………………………….........24
3.4.3單醣組成分析…………………………………………………………………25
3.4.4分子量分佈……………………………………………………………………28
3.4.5官能基結構(FTIR)…………………………………………………………….30
3.4.6離子交換層析…………………………………………………………………30
3.4.7總醣分析…….………………………………………………………………...30
3.4.8化學修飾………………………………………………………………………31
3.5.免疫活性
RAW264.7培養……………………………………………………………………….32
RAW264.7巨噬細胞之細胞存活率的分析………………………………………….32
RAW264.7巨噬細胞之NO分析…………………………………………………….33
RAW264.7巨噬細胞之細胞激素測定……………………………………………….34
四、結果與討論………………………………………………………………………………42
化學組成 &分子性質
4.1綠藻基本組成分析………………………………………………………………..42
4.2綠藻單糖組成分析………………………………………………………………..44
4.3綠藻區分物陰離子交換層析……………………………………………………..47
4.4綠藻區分物經α-amylase 酵素降解……………………………………………...50
4.5 Chlorella sorokiniana水萃物之葉綠素Uv/Visible圖譜….……………………...51
4.6綠藻區分物官能基鑑定.………………………………………………………......53
4.7綠藻區分物分子量分佈及1H圖譜…………………………………………….....56
免疫活性
4.8 (1)綠藻區分物對RAW264.7巨噬細胞存活率…………………………………..68
(2)Chlorella sorokiniana區分物對巨噬細胞 (Raw 264.7 cell) NO的生成….…68
(3) Chlorella sorokiniana 區分物之修飾物對小鼠巨噬細胞 (Raw 264.7 cell)存活率的影響………………………………………………………………………...70
(4)Chlorella sorokiniana區分物之修飾物對小鼠巨噬細胞 (Raw 264.7) 作用生成細胞激素之效果………………………………………………………………...72
(5). Chlorella區分物於不同萃取方式之影響…………………………………....73
(6). Chlorella區分物於免疫活性之影響………………………………………....73
五、結論……………………………………………………………………………………….75
六、參考文獻………………………………………………………………………………….76

表目錄
表一、早期於綠藻生理機能之研究…………………………………………………………….4
表二、綠藻萃取物之文獻整理…………………………………………………………………4
表三、醣蛋白上所鑑結糖分子…………………………………………………………………9
表四、激素功能…………………………………………………………………………..…...14
表五、陰離子與陽離子交換基團…………………………………………………………….16
表六、各類膠體的結構與特性……………………………………………………………….17
表七、單醣組成之HPAEC分析條件………………………………………………………..26
表八、單醣分析回歸方程式………………………………………………………………….27
表九、綠藻萃取區分物之一般組成………………………………………………………….42
表十、綠藻萃取物之單醣組成……………………………………………………………….43
表十一、綠藻萃取物之分子量分析………………………………………………………….60


圖目錄
圖一、顯微鏡下之Chlorella sorokiniana……………………………………………………….2
圖二、綠藻萃取物分別以(a)溶解度觀點;(b)分子區分物產率………………….……………3
圖三、植物性多醣於巨噬細胞表面接收器反應機制圖………………………………………7
圖四、醣蛋白兩種鍵結形式: (a) N-link (b) O-link 與生物體內醣蛋白結構…..……………9
圖五、非特異性免疫反應…………………………………………………………………….10
圖六、特異性免疫反應……………………………………………………………………….11
圖七、膠體過濾過程 …………………………………………………………………………15
圖八、酯化反應反應式……………………………………………………………………….19
圖九、單糖標準品之HPAEC檢量線………………………………………………………..26
圖十、pullulans及葡萄糖之分子量分佈圖………………………………………………….29
圖十一、標準檢量線 (A)總醣 (B)蛋白質 ………………………………………………….31
圖十二、90 ℃,1小時之綠藻劃分物之單醣組成HPAEC層析圖譜………………………45
圖十三、90 ℃,1小時之綠藻劃分物經α-amylase降解單醣組成HPAEC層析圖譜…….46
圖十四、Chlorella sorokiniana 水萃物(A) WS-F1 (B)WS-F2 (C)WS-F3經陰離子交換 DEAE-650 (S)圖譜………………………………………………………………...48
圖十五、Chlorella sorokiniana 水萃物(A) WS-ds-F1 (B)WS-ds-F2 (C)WS-ds-F3經陰離子交換 DEAE-650 (S)圖譜……………………………………………………………….49
圖十六、(左圖)綠藻粉體隨者萃取時間顏色變化 (右圖) 最左圖未添加α-amylase呈現紅黑色,依序處理0 - 60分鐘…………………………………………………………50
圖十七、Chlorella sorokiniana 水萃物與α-amylase 處理後水萃物之區分物之葉綠素Uv/visible圖譜……………………………………………………………………...52
圖十八、Chlorella sorokiniana熱水萃物劃分物之FTIR圖譜(A) WS-F1, (B) WS-F2, (C) WS-F3, (D) WS-ds-F1, (E) WS-ds-F2, 和 (F) WS-ds-F3…………………………54
圖十九、Chlorella sorokiniana熱水萃物劃分物WS-F1之化學修飾物之FTIR圖譜(A) WS-F1-B, (B) WS-F1-S, (C) WS-F1-Cy, (D) WS-F1-E, (E) WS-F1-A, 和 (F) WS-F1-C…………………………………………………………………………..55
圖二十、Chlorella sorokiniana熱水可溶大分子區分物之分子篩層析圖譜(A) WS-ds-F1 (B) WS-ds-F1…………………………………………………………………………..57
圖二十一、Chlorella sorokiniana熱水可溶大分子區分物之分子篩圖譜(A) WS-F1 (B) WS-ds-F1…………………………………………………………………………..58
圖二十二、Chlorella sorokiniana熱水萃物劃分物WS-F1之化學修飾物區分物分子篩圖譜 (A) WS-F1, (B) WS-F1-B, (C) WS-F1-S, (D) WS-F1-Cy, (E) WS-F1-E, (F) WS-F1-A, 和 (G) WS-F1-C………….……………….………………………….59
圖二十三、 WS-F1 1H NMR 光譜 (溶劑D2O)……………………………………………61
圖二十四、 WS-F1-B 1H NMR 光譜 (溶劑D2O)…………………………………………62
圖二十五、 WS-F1-S 1H NMR 光譜 (溶劑D2O)…………………………………………63
圖二十六、 WS-F1-Cy 1H NMR 光譜 (溶劑D2O)………………………………………..64
圖二十七、 WS-F1-E 1H NMR 光譜 (溶劑D2O)…………………………………………65
圖二十八、 WS-F1-A 1H NMR 光譜 (溶劑D2O)…………………………………………66
圖二十九、 WS-F1-C 1H NMR 光譜 (溶劑D2O)…………………………………………67
圖三十、Chlorella sorokiniana區分物對小鼠巨噬細胞 (Raw264.7 cell) 存活率的影響……………………………………………………………………………….….69
圖三十一、Chlorella sorokiniana區分物對巨噬細胞 (Raw264.7 cell) NO的生成…………………………………………………………………………………..69
圖三十二、Chlorella sorokiniana 區分物之修飾物對小鼠巨噬細胞 (Raw 264.7 cell) 存活率的影響…………………………………………………………………………….71
圖三十三、酸類添加物對巨噬細胞 (Raw 264.7 cell)存活率的影響……………………….71
圖三十四、Chlorella sorokiniana區分物之修飾物對小鼠巨噬細胞 (Raw 264.7) 作用生成細胞激素之效果……………………………………………………………….....73
圖三十五、Chlorella sorokiniana區分物之修飾物對小鼠巨噬細胞 (Raw 264.7) 作用生成細胞激素之效果………………………………………………………………….73


王瑩筑。2009。免疫學的觀點探討蒟蒻聚苷露醣之生物活性結構及分子特性。靜宜大學論文。台灣。
吳正偉。2003。米澱粉-菊糖混合系統交互作用與物理性質之研究。台灣大學。台灣。
李宏圖、賴精二、董一致。1977。綠藻之降血糖作用。76:272-276。台灣。
李旻。綠藻中α-glucosidase抑制物之分離與特性鑑定。靜宜大學碩士論文。台灣。
林良平。1994。小球藻(Chlorella)之大量培養及健康食品工業上的應用。中華生質能源學會會誌13(3-4):155-167。台灣。
林建谷。2008。綠藻萃取物與細胞壁組成之分離、鑑定與抑制糖苷酵素活性。靜宜大學碩士論文。台灣。
孫財前。2006。綠藻水萃物之抗氧化性與關鍵組成份。靜宜大學碩士論文。台灣。
許清森。2004。綠藻的營養與保健功效研究。生物產業:277-285。台灣。
陳石根、周潤琦編著、白壽雄審校。2002。酶學。台北,台灣。
楊志元、林智暉、劉定萍、王聖予、汪惠蘭、陳豪勇鑑修。免疫生物學。台北,台灣。
鍾景光、王祥甫編著、張文正監修。1999。圖解免疫學。台北,台灣。
Antunes, F., & Cadenas, E. (2001). Cellular titration of apoposis with steady state concentractions of H2O2: submicromolar levels of H2O2 induced apoptosis through Fenton chemistry independent of cellular thiol state. Free Radical Biology and Medicine, 30, 1008-1018.
Arakawa, N., Nemoto, S., Suzuki, E., & Otsuka, M. (1994). Role of hydrogen peroxide in the inhibitory effect of ascorbate on cell growth. Journal of Nutrition Science, 40, 219-227.
Bancroft, GJ., Schreiber, RD., & Unanue, ER. (1991). Natural Immunity: A T-cell-independent pathway of macrophage activation defined in the scid mouse. Review of Immunology, 124, 5-24.
Bemiller, J. N. (2007). Carbohydrate chemistry for food scientists. 2th Ed. U.S.A.
Cai, H. (2005). Hydrogen peroxide regulation of endothelial function: origins, mechanism, and consequences. Cardiovascular Research, 68, 26-36.
Clement, M.V., Ramalingam, J., Long, L.H., & Halliwell, B. (2001). The in vitro cytotoxicity of ascorbate depends on the culture medium used too perform the assay and involves hydrogen peroxide. Antioxidant Redox Signaingl, 3, 157-163.
Chen, Q., Espey, M. G., Krishna, M. C., Mitchell, B. J., Corpe, G. R., Buettner, G.R., Shacter, E., & Levine, M. (2005). Pharmacologic ascorbic acid concentraction selectively kill cancer cell: action as a pro-drug to deliver hydrogen peroxide to tissues. Proceedings of the National Academy of Science, 102, 13604-13609.
Chen, Q., Espey, M. G., Krishna, M. C., Mitchell, B. J., Corpe, G. R., Buettner, G.R., Shacter, E., & Levine, M. (2007).Ascorbate in pharmacologic concentrations selectively generates ascorbate radical and hydrogen peroxide in extracellular fluid in vivo. Proceedings of the National Academy of Science, 104, 8749-8754.
Chen, Q., Espey, M. G., Krishna, M. C., Mitchell, B. J., Corpe, G. R., Buettner, G.R., Shacter, E., & Levine, M. (2008). Pharmacologic doses of asorbate act as a prooxidant and decrease growth of aggressive tumor xenografts in mice. Proceedings of the National Academy of Science, 105, 11105-11109.
Dantas, D. C.M., & Queiroz, M. L.S. (1999). Effects of Chlorella vulgaris on bone marrow progenitor cells of mice infected with Listeria monocytogenes. International Journal of Immunopharmacology, 21, 499-508.
Dröge, W. (2005). Oxidative stress and ageing: is ageing a cysteine deficiency syndrome ? Philosphical Transactions of the Royal Society, 360, 2355–2372.
Elshorbagy, A. K., Nurk, E., Gjesdal, C. G., Tell, G. S., Ueland, P. M., Nygård, O., Tverdal, A., Vollset, S. E., & Refsum, H. (2008). Homocysteine, cysteine, and body composition in the Hordaland Homocysteine Study: does cysteine link amino acid and lipid metabolism? American Journal of Clinical Nutrition , 88 , 738-746.
Gamal-Eldeen, A. M., Amer, H., Helmy, W. A., Talaat, R., & Ragab, H. (2007). Chemically-modified polysaccharide extract derived from Leucaena leucocephala alters Raw264.7 murine macrophage funtions. International Immunopharmacology , 7, 871-878.
Hahn, H., & Kaufamann, SH. (1981). The role of cell-mediated immunity in bacterial infection. Review of Infectious Disease 3, 1221-1250.
Hasegawa, T ., Okuda, M., Makino, M., Hiromatsu, K., Nomoto, K., & Yoshikai, Y. (1995)Hot water extract of Chlorella vulgaris reduce opportunistic infection with Listeria monocytogenes in C57BL/6 mice infection LP-BM5 murine leukemia viruses. International Journal of Imunopharmacology, 17, 505-512.
Hasegawa, T., Ito, K., Ueno, S., Kumamoto, S., Ando, Y., Yamada, A., Nomoto, k., & Yasunobu, Y. (1999). Oral administration of hot water extract of Chlorella vulgaris reduses IgE production against milk casein in mice. International Journal of Immunopharmacology, 21, 311-323.
Hasegawa, T., Kimura, Y., Hiromatsu, K., Kobayashi, N., Yamada, A., Makino, M., Okuda, M., Sano, T., Nomoto, K., & Yoshikai, Y. (1997). Immunopharmacology, 35, 273-282.
Hasegawa, T., Noda, K., Kumamoto, S., Ando, Y., Yamada, A., & Yasunobu, Y. (2000). Chlorella vulgaris culture supernatant(CVS) reduces phychological stress-induced apoptosis in thymocytes of mice. International Journal of Immunopharmacology, 22, 877-885.
Hasegawa, T., Noda, K., Matsuguchi, M., Tanaka, K., Kumamoto, S., Shoyama, Y. & Yoshikai, Y. (2002). Toll-like receptor 2 is at least partly involved in the antitumor activity of glycoprotein from Chlorella vulgaris. International Immunopharmacology, 2, 579-589.
Ichinara, A., & Greenberg, D. M. (1955). Pathway of serine formation from carbohydrate in rat liver. Proceedings of the National Academy of Science, 22, 605-609.
Iredale, J. P., Benyon, R. C., McCullen, M., Northrop, M., & Pawely, S. (1998). Mechanisms of spontaneous resolution of rat live fibrosis.Hepatic stellate cell apoptosis and reduced hepatic expression of metalloproteinase inhibitors. Journal of Cliical Psychology , 102, 538-549.
Kralovec, J. A., Metera, K. L., Kumar, J. R., Watson, L. V., Girouard, G. S., Guan, Y., Carr, R. I., Barrow, C. J., & Ewart, H. S. (2007). Immunostimulatory principles from Chlorella pyrenoidosa—Part 1: Isolation and biological assessment in vitro. Phytomedicine, 14(1) , 57-64.
Kweon, Y., Paik, Y., Bernd Schnabl, B., Qian, T., Lemasters, J. J., & Brenner, D. A. (2003). Gliotoxin-mediated apoptosis of activated human hepatic stellate. Journal of Hepatology, 39, 38-46.
Lee, H. S., Choi, C. Y., Cho, C., & Song, Y. (2003). Attenuating effect of Chlorella supplementation on oxidative stress and NFkappaB activation in peritoneal macrophage and liver of C57BL/6 mice fed on an atherogenic diet. Biochemistry, 67, 2083─2090.
Meldrum, B. S. (2000). Glutamate as a neurotransmitter in the brain: review of physiology and pathology. Journal of Nutrition, 130, 1007-1015.
Miranda, M. S., Sato, S., & Mancini-Filho, J. (2001) Antioxidant activity of the microalga Chlorella vulgaris cultured on special condition. Boll. Chim. Farm, 140, 165─168.
Mothé, C.G., & Rao, M.A. (2000). Thermal behavior of gum Arabic in comparison with cashew gum. Thermochimica Acta, 9-13, 357-358.
Murphy, K., Travers, P., & Walport, M. (2008). Janeway’s Immunobiology, 7th Ed. Garland Science, New York.
Nagai, R., Nagai, M., Shimasaki, S., Baynes, J. W., & Fujiwara, Y. (2010). Citric acid inhibits development of cataracts, proteinuria and ketosis in streptozotocin (type 1) diabetic rats. Biochemical and Biophyscial Research Communcations, 393, 118-122.
Renger, T., Madjet, M. E., Müh, F., Trostmann, I., Schmitt, F. J., Theiss, C., Paulsen, H., Eichler, H. J., Knorr, A., & Renger, G. (2009). Thermally activated superradiance and intersystem crossing in the water-soluble chlorophyll bind protein. Journal of Chemical physics, 113,9948-9957.
Schepetkin, I. A., & Quinn, M. T. (2006). Botanical polysaccharides﹕Macrophage immunomodulation and therapeutic potential. International Immunopharmacology, 6 ,317-333.
Sinha, S., Astani, A., Ghosh, T., Schnitzler, P., & Ray, B. (2010). Polysaccharides from Sargassum tenerrimum: structural features, chemical modification and anti-viral activity. Phytochemistry, 71, 235-242.
Sheng, J., Yu, F., Xin, Z., Zhao, L., Zhu, X., & Hu, Q. (2007). Preparation, identification and their antitumor activities in vitro of polysacchraides from Chlorella pyrenoidosa. Food Chemistry, 105 ,533-539.
Shi, y., Sheng, J., Yang, F., & Hu, Q. (2007). Purification and identification of polysaccharide derived from Chlorella pyrenoidosa. Food Chemistry, 103(1) ,101-105.
Suárez, E. R., Kralovec, J. A., & Grindley, T. B. (2010).Isolation of polysaccharides from algae﹕the immunostimulatory principle of Chlorella pyrenoidosa. Carbohydrate Research, 345 ,1190-1204.
Snell, k. (1984). Enzyme of serine metabolism in normal, developing and neoplastic rat tissues. Advances in Enzyme Regulation, 22, 325-400.
Suárez, E. R., Bugden, S. M., Kai, F. B., Kralovec, J. A., Noseda, M. D., Barrow, C. J., & Grindley, T. B. (2008). Isolation and structural determination of cyclic β-(1→2)-gaucans from an alga, Chlorella pyrenoidosa. Carbohydrate Research, 343 ,2623-2633.
Suárez, E. R., Kralovec, J. A., Noseda, M. D., Ewart, H. S., Barrow, C. J., Lumsden, M. D., & Grindley, T. B. (2005). Isolation, characterization and structural determination of a unique type of arabinogalactan from an immunostimulatory extract of Chlorella pyrenoidosa. Carbohydrate Research, 340 ,1489-1498.
SzÜts, A., Budai, S. M., Erös, I., Otomo, N., & Szabó, R. P. (2010). Study of gel-forming properties of sucrose esters for thermosensitive drug delivery system. International Journal of Immunopharmacology, 383, 132-137.
Tabatabaie, L., Klomp, L. M., Berger, R., & Koning de, T. J. (2010). L-Serine synthesis in the central nervous system : A review on serine deficiency disorders. Molecular Genetics and Metabolism, 99, 256-262.
Tao, Y., Zhang, y., & Zhang, L. (2009). Chemical modification and antitumor activities of two polysaccharide-protein complexs from Pleurotus tuber-rigium. International Journal of Biological Macromolecular, 45, 109-115.
Unkeiss J. (1991). Innate immunity silversyein 5. Curr opin immunol 3, 47-97.
Villegas, B., & Costell, E. (2007). Flow behaviour of inulin-milk beverages. Influence of inulin average chain length and of milk fat content. International Dairy Journal, 17, 776─781.
Wade, L. A., & Brady, H. M. (1981). Cysteine and cystine transport at the blood-brain barrier. Journal of Neurochemistry, 37, 730-734.
Wu, L.-C., Ho, J.-A., Shieh, M.-C., & L, I.-W. (2005). Antioxidant and antioproliferative activities of Spirulina and Chlorella water extract. Journal of Agriculture and Food Chemistry, 53, 4207-4212.
Yamasaki, M., Yamada, K., & Furuya, S. (2001). 3-phosphoglycerate dehydrogenase, a key enzyme for L-serine biosynthesis, is preferentially expressed in the radical glia/astrocyte lineage and olfactory ensheathing glia in the mouse brain. Journal of Neuroscience, 21, 7691-7704.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top