(3.235.139.152) 您好!臺灣時間:2021/05/11 06:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:楊舒涵
研究生(外文):Shu-Han Yang
論文名稱:靈芝萃取物複方對老化促進小鼠抗老化及學習記憶能力之探討
論文名稱(外文):Effects of Ganoderma lucidum extracts formula on anti-aging and learning memory ability in senescence accelerated mice
指導教授:王銘富王銘富引用關係
指導教授(外文):Ming-Fu Wang
口試委員:廖俊旺詹吟菁徐成金陳甫州
口試委員(外文):Jiunn-Wang LiaoYin-Ching ChanCheng-Chin HsuFu-Chou Cheng
口試日期:2011-07-18
學位類別:碩士
校院名稱:靜宜大學
系所名稱:食品營養學系
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:119
中文關鍵詞:靈芝老化抗氧化學習記憶老化促進
外文關鍵詞:Ganoderma lucidumagingantioxidantlearning and memorysenescence-accelerated mice
相關次數:
  • 被引用被引用:4
  • 點閱點閱:823
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:64
  • 收藏至我的研究室書目清單書目收藏:0
靈芝 (Ganoderma lucidum) 萃取物在體外與體內試驗中,對於抗氧化、調整免疫與抗腫瘤皆具有廣大的藥理作用。本研究目的在探討靈芝萃取物複方 (Ganoderma lucidum extracts formula; GLF) 對老化促進小鼠抗老化及學習記憶能力之探討。實驗以6月齡雄性與雌性SAMP8小鼠 (senescence-accelerated mice) 為對象,隨機分為對照組及實驗組,實驗組分為低、中、高三組劑量組 (308 mg/kgBW、615 mg/kgBW、3075 mg/kgBW) 共4組,每組10隻,實驗為期12週。實驗期間記錄體重變化、攝食量,於第11週進行小鼠活動量 (locomotion) 及評估老化指數;第12週進行單次被動迴避試驗 (single-trail passive avoidance test) 及主動迴避試驗 (active shuttle avoidance test) 評估學習記憶能力。動物犧牲後,分析血液生化值、抗氧化酵素活性、過氧化物含量與腦部β-類澱粉蛋白 (β-amyloid protein; Aβ) 。結果顯示,各組之間的體重、攝食量及活動量並無顯著差異。老化指數評估方面,6月齡雄性及雌性小鼠實驗組之老化指數總分皆顯著低於對照組 (p< 0.05) 。實驗組於單次被動迴避試驗及主動迴避試驗皆較對照組有較高之學習記憶能力 (p< 0.05) 。實驗組明顯能降低丙二醛 (MDA) 、蛋白質羰基 (carbonyl protein) 、8羥基-2’-去氧鳥嘌呤核苷 (8-hydroxy-2-deoxy Guanosine; 8-OHdG) 、一氧化氮 (Nitric oxide; NO) 的含量,及誘發型ㄧ氧化氮合成酶 (Inducible nitric oxide synthase; iNOS) 與乙醯膽鹼酯酶 (Acetylcholinesterase; AchE) 活性。實驗組較對照組提升抗氧化狀態,包含超氧歧化酶(Superoxide dismutase; SOD)、觸酶(catalase; CAT) 、麩胱苷肽過氧化酶 (Glutathione peroxidase; GPx) 的活性。此外,實驗組亦較對照組腦部有較低的β-類澱粉蛋白沉積量。綜上所述,靈芝萃取物複方能促進小鼠抗氧化防禦酵素系統、降低氧化壓力誘發損傷、β-類澱粉蛋白沉積及改善其學習記憶能力,進而推測靈芝萃取物複方可能具延緩小鼠衰老之功效。
Studies have indicated that components of Ganoderma lucidum extracts have a wide range of pharmacological actions including antioxidant, immunomodulating and anti-tumor effects as demonstrated in both in vitro and in vivo models. The purpose of this study was to investigate the effects of Ganoderma lucidum extracts formula (GLF) on anti-aging and learning and memory ability in senescence-accelerated mice (SAMP8) . Six-month old male and female SAMP8 mice were divided into four: control and three experimental groups supplemented with 308 mg/kgBW/day、615 mg/kgBW/day and 3075 mg/kgBW/day GLF for 12 weeks. Besides food intake, the body weight was also measured. The 11th week, the open field activity test was recorded in evaluation for behavior, and the aging scores were measured. One week before scarification, the single-trail passive avoidance test and active shuttle avoidance test were performed. The biochemical parameters of plasma were analyzed after the mice sacrificed. The mice were sacrificed to analyze the biochemical parameters of sera. The antioxidative enzyme activities and the peroxidation contacts were estimated in the brain or plasma, and the β-amyloid of brain was observed. The results showed that there was no significant difference in the body weight, food intake, and locomotion among each group. The aging score of control groups was significantly higher than experimental groups in 6-month old mice (p< 0.05). Results from single-trail passive avoidance test and active shuttle avoidance test showed that experimental groups had significantly better learning memory ability (p< 0.05). GLF-treated SAMP8 mice had significantly decreased MDA, protein carbonyl, 8-OHdG, NO contents, lowered iNOS and AchE activity. Activities of antioxidant ability, including SOD, catalase, and GPx, in the experimental groups were significantly higher than that of control groups (p< 0.05). Besides, GLF demonstrated significantly less β-amyloid protein of brain deposition than the control group (p< 0.05). In summary, the supplement of GLF may promote the antioxidant defense system, reduce oxidative stress-induced damage, reduce the accumulation of β-amyloid protein deposition, and improve learning and memory ability. The underlying anti-aging mechanism needs further investigation.


摘 要………………………………………………………………………I
Abstract...................................................................................................................II
目 錄………………………………………………………………………IV
圖目錄………………………………………………………………………VIII
表目錄………………………………………………………………………X
縮寫表………………………………………………………………………XI
謝 誌………………………………………………………………………XII
第一章 前言………………………………………………………………1
第二章 文獻回顧……………………………………………………………2
第一節 老化………………………………………………………………2
一、老化之定義……………………………………………………………2
二、阿茲海默症……………………………………………………………2
三、自由基、老化與阿茲海默症…………………………………………3
四、阿茲海默氏症與一氧化氮……………………………………………3
五、阿茲海默氏症與乙醯膽鹼酯酶………………………………………5
第二節 自由基對生物體的傷害…………………………………………6
一、對脂質的影響…………………………………………………………6
二、對蛋白質的影響………………………………………………………6
三、對核酸的影響…………………………………………………………7
第三節 抗氧化防禦系統…………………………………………………10
一、酵素性抗氧化防禦系統………………………………………………10
二、非酵素性抗氧化劑……………………………………………………11
第四節 學習記憶能力……………………………………………………15
一、學習記憶之簡介………………………………………………………15
二、學習記憶之類型………………………………………………………15
第五節 靈芝多醣體複方之簡介…………………………………………18
一、靈芝……………………………………………………………………18
二、巴西蘑菇………………………………………………………………21
三、猴頭菇…………………………………………………………………22
四、納豆菌…………………………………………………………………24
第六節 老化促進小鼠……………………………………………………26
ㄧ、老化促進小鼠來源……………………………………………………26
二、老化促進小鼠之老化特徵及高氧化壓力狀態………………………26
三、老化促進小鼠之病理特徵……………………………………………27
四、老化促進小鼠之學習記憶缺陷………………………………………27
第七節 研究目的…………………………………………………………29
第三章 材料與方法………………………………………………………30
第一節 實驗動物…………………………………………………………30
第二節 實驗材料…………………………………………………………31
ㄧ、實驗儀器………………………………………………………………31
二、實驗藥品與試劑………………………………………………………31
三、實驗分組與劑量………………………………………………………32
四、劑量換算………………………………………………………………35
第三節 實驗設計與步驟…………………………………………………36
一、實驗設計………………………………………………………………36
二、老化指數評估…………………………………………………………36
三、活動量測試……………………………………………………………41
四、學習記憶測試…………………………………………………………41
五、動物試驗犧牲與檢體採集……………………………………………47
第四節 實驗分析方法……………………………………………………48
一、超氧歧化酶……………………………………………………………48
二、觸酶……………………………………………………………………49
三、麩胱苷肽過氧化酶……………………………………………………49
四、蛋白質羰基……………………………………………………………50
五、丙二醛…………………………………………………………………51
六、DNA之8羥基-2’-去氧鳥嘌呤核苷 ……………………………………52
七、誘發型ㄧ氧化氮合成酶………………………………………………56
八、ㄧ氧化氮………………………………………………………………57
九、乙醯膽鹼酯酶…………………………………………………………58
十、腦部病理切片觀察……………………………………………………59
第五節 統計分析……………………………………………………………65
第四章 結果………………………………………………………………66
第一節 體重及攝食量……………………………………………………66
第二節 老化指數…………………………………………………………68
第三節 活動量……………………………………………………………72
第四節 學習與記憶能力…………………………………………………74
一、單次被動迴避學習……………………………………………………74
二、主動迴避學習…………………………………………………………74
第五節 臟器重量…………………………………………………………80
第六節 血液生化值………………………………………………………80
第七節 抗氧化酵素與氧化狀態…………………………………………84
一、超氧歧化酶……………………………………………………………84
二、觸酶……………………………………………………………………84
三、麩胱苷肽過氧化酶……………………………………………………84
四、蛋白質羰基……………………………………………………………84
五、丙二醛…………………………………………………………………85
六、DNA之8羥基-2’-去氧鳥嘌呤核苷 ……………………………………85
七、誘發型ㄧ氧化氮合成酶………………………………………………85
八、ㄧ氧化氮………………………………………………………………86
九、乙醯膽鹼酯酶…………………………………………………………86
第八節 腦部β-類澱粉蛋白之沉積………………………………………96
第五章 討論………………………………………………………………100
第六章 結論………………………………………………………………107
參考文獻……………………………………………………………………108

行政院內政部統計通報:99年底人口結構分析. 2011.
Aebi H. Catalase in vitro. Methods Enzymol. 1984;105:121-6.
Ajith TA, Sudheesh NP, Roshny D, Abishek G, Janardhanan KK. Effect of Ganoderma lucidum on the activities of mitochondrial dehydrogenases and complex I and II of electron transport chain in the brain of aged rats. Exp Gerontol. 2009;44:219-23.
Alfonso D, Luis DJ, Liliana M, Minerva C, Blanca E, Edgar Z, et al. The amyloid- 25–35 injection into the CA1 region of the neonatal rat hippocampus impairs the long-term memory because of an increase of nitric oxide. Neuroscience Letters. 2010;468 151-5.
Ali AK, Banks WA, Kumar VB, Shah GN, Lynch JL, Farr SA, et al. Nitric oxide activity and isoenzyme expression in the senescence-accelerated mouse p8 model of Alzheimer's disease: effects of anti-amyloid antibody and antisense treatments. J Gerontol A Biol Sci Med Sci. 2009;64:1025-30.
Armbrecht HJ, Boltz MA, Kumar VB, Flood JF, Morley JE. Effect of age on calcium-dependent proteins in hippocampus of senescence-accelerated mice. Brain Res. 1999;842:287-93.
Armstrong JS. The role of the mitochondrial permeability transition in cell death. Mitochondrion. 2006;6:225-34.
Aruoma OI. Nutrition and health aspects of free radicals and antioxidants. Food Chem Toxicol. 1994;32:671-83.
Brown GC. Mechanisms of inflammatory neurodegeneration: iNOS and NADPH oxidase. Biochem Soc Trans. 2007;35:1119-21.
Burton GW, Ingold KU. Vitamin E as an in vitro and in vivo antioxidant. Ann N Y Acad Sci. 1989;570:7-22.
Chance B, Sies H, Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol Rev. 1979;59:527-605.
Chen XP, Chen Y, Li SB, Chen YG, Lan JY, Liu LP. Free radical scavenging of Ganoderma lucidum polysaccharides and its effect on antioxidant enzymes and immunity activities in cervical carcinoma rats. Carbohydrate Polymers. 2009;77:389-93.
Chen YG, Shen Z, Chen XP. Modulatory effect of Ganoderma lucidum polysaccharides on serum antioxidant
Cherian E, Sudheesh NP, Janardhanan KK, Patani G. Free-radical scavenging and mitochondrial antioxidant activities of Reishi-Ganoderma lucidum (Curt: Fr) P. Karst and Arogyapacha-Trichopus zeylanicus Gaertn extracts. J Basic Clin Physiol Pharmacol. 2009;20:289-307.
Chia-Wei Hung Y-CC, Wan-Ling Hsieh, Shih-Hwa Chiou, Chung-Lan Kao. Ageing and neurodegenerative diseases. Ageing Research Reviews. 2010;9S:36-46.
Chiba Y, Shimada A, Kumagai N, Yoshikawa K, Ishii S, Furukawa A, et al. The senescence-accelerated mouse (SAM): a higher oxidative stress and age-dependent degenerative diseases model. Neurochem Res. 2009;34:679-87.
Chien CT, Lee PH, Chen CF, Ma MC, Lai MK, Hsu SM. De novo demonstration and co-localization of free-radical production and apoptosis formation in rat kidney subjected to ischemia/reperfusion. J Am Soc Nephrol. 2001;12:973-82.
Cooke MS, Evans MD, Podmore ID, Herbert KE, Mistry N, Mistry P, et al. Novel repair action of vitamin C upon in vivo oxidative DNA damage. FEBS Lett. 1998;439:363-7.
Del Valle J, Duran-Vilaregut J, Manich G, Casadesus G, Smith MA, Camins A, et al. Early amyloid accumulation in the hippocampus of SAMP8 mice. J Alzheimers Dis. 2010;19:1303-15.
enzymes activities in ovarian cancer rats. Carbohydrate Polymers 2009;78:258-62.
Farooqui T, Farooqui AA. Aging: an important factor for the pathogenesis of neurodegenerative diseases. Mech Ageing Dev. 2009;130:203-15.
Forland DT, Johnson E, Saetre L, Lyberg T, Lygren I, Hetland G. Effect of an extract based on the medicinal mushroom Agaricus blazei Murill on expression of cytokines and calprotectin in patients with ulcerative colitis and Crohn's disease. Scand J Immunol. 2011;73:66-75.
Forland DT, Johnson E, Tryggestad AM, Lyberg T, Hetland G. An extract based on the medicinal mushroom Agaricus blazei Murill stimulates monocyte-derived dendritic cells to cytokine and chemokine production in vitro. Cytokine. 2010;49:245-50.
Fotuhi M, Zandi PP, Hayden KM, Khachaturian AS, Szekely CA, Wengreen H, et al. Better cognitive performance in elderly taking antioxidant vitamins E and C supplements in combination with nonsteroidal anti-inflammatory drugs: the Cache County Study. Alzheimers Dement. 2008;4:223-7.
Fridovich I. Superoxide dismutases. An adaptation to a paramagnetic gas. J Biol Chem. 1989;264:7761-4.
Fujita M, Nomura K, Hong K, Ito Y, Asada A, Nishimuro S. Purification and characterization of a strong fibrinolytic enzyme (nattokinase) in the vegetable cheese natto, a popular soybean fermented food in Japan. Biochem Biophys Res Commun. 1993;197:1340-7.
Fujita R, Liu J, Shimizu K, Konishi F, Noda K, Kumamoto S, et al. Anti-androgenic activities of Ganoderma lucidum. J Ethnopharmacol. 2005;102:107-12.
Gao Y, Zhou S, Huang M, Xu A. Antibacterial and Antiviral Value of the Genus Ganoderma P. Karst. Species (Aphyllophoromycetideae): A Review. International Journal of Medicinal Mushrooms. 2003;5:235-46.
Garcia-Osta A, Alberini CM. Amyloid beta mediates memory formation. Learn Mem. 2009;16:267-72.
Gong Y, Liu L, Xie B, Liao Y, Yang E, Sun Z. Ameliorative effects of lotus seedpod proanthocyanidins on cognitive deficits and oxidative damage in senescence-accelerated mice. Behav Brain Res. 2008;194:100-7.
Guerra L, Cerbai E, Gessi S, Borea PA, Mugelli A. The effect of oxygen free radicals on calcium current and dihydropyridine binding sites in guinea-pig ventricular myocytes. Br J Pharmacol. 1996;118:1278-84.
Guix FX, Uribesalgo I, Coma M, Munoz FJ. The physiology and pathophysiology of nitric oxide in the brain. Prog Neurobiol. 2005;76:126-52.
He XL, Zhou WQ, Bi MG, Du GH. Neuroprotective effects of icariin on memory impairment and neurochemical deficits in senescence-accelerated mouse prone 8 (SAMP8) mice. Brain Res. 2010;1334:73-83.
Henry WQ, Frank ML. Alzheimer's disease. The new england journal of medicine. 2010;362:329-44.
Hiwatashi K, Kosaka Y, Suzuki N, Hata K, Mukaiyama T, Sakamoto K, et al. Yamabushitake mushroom (Hericium erinaceus) improved lipid metabolism in mice fed a high-fat diet. Biosci Biotechnol Biochem. 2010;74:1447-51.
Ho N, Liauw JA, Blaeser F, Wei F, Hanissian S, Muglia LM, et al. Impaired synaptic plasticity and cAMP response element-binding protein activation in Ca2+/calmodulin-dependent protein kinase type IV/Gr-deficient mice. J Neurosci. 2000;20:6459-72.
Hsu RL, Lee KT, Wang JH, Lee LY, Chen RP. Amyloid-degrading ability of nattokinase from Bacillus subtilis natto. J Agric Food Chem. 2009;57:503-8.
Hudson JM. Automatic memory processes in normal ageing and Alzheimer's disease. Cortex. 2008;44:345-9.
Hynd MR, Scott HL, Dodd PR. Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer's disease. Neurochem Int. 2004;45:583-95.
Izawa S, Inoue Y. A screening system for antioxidants using thioredoxin-deficient yeast: discovery of thermostable antioxidant activity from Agaricus blazei Murill. Appl Microbiol Biotechnol. 2004;64:537-42.
Janero DR. Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radic Biol Med. 1990;9:515-40.
Karuppagounder SS, Xu H, Shi Q, Chen LH, Pedrini S, Pechman D, et al. Thiamine deficiency induces oxidative stress and exacerbates the plaque pathology in Alzheimer's mouse model. Neurobiol Aging. 2009;30:1587-600.
Kasai H. Analysis of a form of oxidative DNA damage, 8-hydroxy-2'-deoxyguanosine, as a marker of cellular oxidative stress during carcinogenesis. Mutat Res. 1997;387:147-63.
Kawagishi H, Zhuang C, Yunoki R. Compounds for dementia from Hericium erinaceum. Drugs Future. 2008;33:149-55.
Kitts DD. An evaluation of multiple effects of the antioxidant vitamins. Trends in Food Science & Technology. 1997;8:198-203.
Kurokawa T, Asada S, Nishitani S, Hazeki O. Age-related changes in manganese superoxide dismutase activity in the cerebral cortex of senescence-accelerated prone and resistant mouse. Neurosci Lett. 2001;298:135-8.
Lai CS, Yu MS, Yuen WH, So KF, Zee SY, Chang RC. Antagonizing beta-amyloid peptide neurotoxicity of the anti-aging fungus Ganoderma lucidum. Brain Res. 2008;1190:215-24.
Lakshmi B, Ajith TA, Sheena N, Gunapalan N, Janardhanan KK. Antiperoxidative, anti-inflammatory, and antimutagenic activities of ethanol extract of the mycelium of Ganoderma lucidum occurring in South India. Teratog Carcinog Mutagen. 2003;Suppl 1:85-97.
Lee JS, Hong EK. Hericium erinaceus enhances doxorubicin-induced apoptosis in human hepatocellular carcinoma cells. Cancer Lett. 2010;297:144-54.
Lin YL, Liang YC, Tseng YS, Huang HY, Chou SY, Hseu RS, et al. An immunomodulatory protein, Ling Zhi-8, induced activation and maturation of human monocyte-derived dendritic cells by the NF-kappaB and MAPK pathways. J Leukoc Biol. 2009;86:877-89.
Liu M, Wallmon A, Olsson-Mortlock C, Wallin R, Saldeen T. Mixed tocopherols inhibit platelet aggregation in humans: potential mechanisms. Am J Clin Nutr. 2003;77:700-6.
Machlin LJ, Bendich A. Free radical tissue damage: protective role of antioxidant nutrients. FASEB J. 1987;1:441-5.
Maltsev AV, Bystryak S, Galzitskaya OV. The role of beta-amyloid peptide in neurodegenerative diseases. Ageing Res Rev. 2011.
Memory: From Mind to Molecules. Nat Med. 1999;5:1343-4.
Mikkelsen L, Bialkowski K, Risom L, Lohr M, Loft S, Moller P. Aging and defense against generation of 8-oxo-7,8-dihydro-2'-deoxyguanosine in DNA. Free Radic Biol Med. 2009;47:608-15.
Miller NJ, Sampson J, Candeias LP, Bramley PM, Rice-Evans CA. Antioxidant activities of carotenes and xanthophylls. FEBS Lett. 1996;384:240-2.
Milner MN, Makise KM. Natto and its active ingredient nattokinase. . Alternative and complementary therapies. 2002;8:157-64.
Miyamoto M, Hirai K, Heya T, Nagaoka A. Effects of a sustained release formulation of thyrotropin-releasing hormone on behavioral abnormalities in senescence-accelerated mice. Eur J Pharmacol. 1994;271:357-66.
Mizuno T. Medicinal properties and clinical effects of culinary-medicinal mushroom Agaricus blazei Murill(Agaricomycetideae)(Review). . International tournal of medicinal mushrooms. 2002;4:299-312.
Mori K, Inatomi S, Ouchi K, Azumi Y, Tuchida T. Improving effects of the mushroom Yamabushitake (Hericium erinaceus) on mild cognitive impairment: a double-blind placebo-controlled clinical trial. Phytother Res. 2009;23:367-72.
Mori K, Obara Y, Moriya T, Inatomi S, Nakahata N. Effects of Hericium erinaceus on amyloid beta(25-35) peptide-induced learning and memory deficits in mice. Biomed Res. 2011;32:67-72.
Morley JE, Kumar VB, Bernardo AE, Farr SA, Uezu K, Tumosa N, et al. Beta-amyloid precursor polypeptide in SAMP8 mice affects learning and memory. Peptides. 2000;21:1761-7.
Morris MC, Evans DA, Tangney CC, Bienias JL, Wilson RS, Aggarwal NT, et al. Relation of the tocopherol forms to incident Alzheimer disease and to cognitive change. Am J Clin Nutr. 2005;81:508-14.
Mrsic J, Zupan G, Erakovic V, Simonic A, Varljen J. The influence of nimodipine and MK-801 on the brain free arachidonic acid level and the learning ability in hypoxia-exposed rats. Prog Neuropsychopharmacol Biol Psychiatry. 1997;21:345-58.
Nishikawa T, Takahashi JA, Fujibayashi Y, Fujisawa H, Zhu B, Nishimura Y, et al. An early stage mechanism of the age-associated mitochondrial dysfunction in the brain of SAMP8 mice; an age-associated neurodegeneration animal model. Neurosci Lett. 1998;254:69-72.
Ohno N, Furukawa M, Miura NN, Adachi Y, Motoi M, Yadomae T. Antitumor beta glucan from the cultured fruit body of Agaricus blazei. Biol Pharm Bull. 2001;24:820-8.
Okatani Y, Wakatsuki A, Reiter RJ, Miyahara Y. Melatonin reduces oxidative damage of neural lipids and proteins in senescence-accelerated mouse. Neurobiol Aging. 2002;23:639-44.
Paglia DE, Valentine WN. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med. 1967;70:158-69.
Paterson RR. Cordyceps: a traditional Chinese medicine and another fungal therapeutic biofactory? Phytochemistry. 2008;69:1469-95.
Petursdottir AL, Farr SA, Morley JE, Banks WA, Skuladottir GV. Lipid peroxidation in brain during aging in the senescence-accelerated mouse (SAM). Neurobiol Aging. 2007;28:1170-8.
Porayette P, Gallego MJ, Kaltcheva MM, Bowen RL, Vadakkadath Meethal S, Atwood CS. Differential processing of amyloid-beta precursor protein directs human embryonic stem cell proliferation and differentiation into neuronal precursor cells. J Biol Chem. 2009;284:23806-17.
Reznick AZ, Packer L. Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol. 1994;233:357-63.
Roberta Saltarelli PC, Mirco Iotti, Alessandra Zambonelli, Michele Buffalini,, Lucia Casadei LV, Vilberto Stocchi. Biochemical characterisation and antioxidant activity of mycelium of Ganoderma lucidum from Central Italy. Food Chemistry. 2009;116:143-51.
Rosenzweig MR. Experience, memory, and the brain. Am Psychol. 1984;39:365-76.
Rosenzweig MR. Modification of Brain Circuits through Experience. 2007.
Sanodiya BS, Thakur GS, Baghel RK, Prasad GB, Bisen PS. Ganoderma lucidum: a potent pharmacological macrofungus. Curr Pharm Biotechnol. 2009;10:717-42.
Sato E, Kurokawa T, Oda N, Ishibashi S. Early appearance of abnormality of microperoxisomal enzymes in the cerebral cortex of senescence-accelerated mouse. Mech Ageing Dev. 1996;92:175-84.
Sies H. Oxidative stress: from basic research to clinical application. Am J Med. 1991;91:31S-8S.
Silva AJ, Kogan JH, Frankland PW, Kida S. CREB and memory. Annu Rev Neurosci. 1998;21:127-48.
Son CG, Shin JW, Cho JH, Cho CK, Yun CH, Chung W, et al. Macrophage activation and nitric oxide production by water soluble components of Hericium erinaceum. Int Immunopharmacol. 2006;6:1363-9.
Sorimachi K, Akimoto K, Ikehara Y, Inafuku K, Okubo A, Yamazaki S. Secretion of TNF-alpha, IL-8 and nitric oxide by macrophages activated with Agaricus blazei Murill fractions in vitro. Cell Struct Funct. 2001;26:103-8.
Speakman JR, Selman C. The free-radical damage theory: Accumulating evidence against a simple link of oxidative stress to ageing and lifespan. Bioessays. 2011;33:255-9.
Stadtman ER. Protein oxidation and aging. Free Radic Res. 2006;40:1250-8.
Stadtman ER. Protein oxidation and aging. Science. 1992;257:1220-4.
Su CL, Chen FN, Won SJ. Involvement of apoptosis and autophagy in reducing mouse hepatoma ML-1 cell growth in inbred BALB/c mice by bacterial fermented soybean products. Food Chem Toxicol. 2011;49:17-24.
Sudheesh NP, Ajith TA, Ramnath V, Janardhanan KK. Therapeutic potential of Ganoderma lucidum (Fr.) P. Karst. against the declined antioxidant status in the mitochondria of post-mitotic tissues of aged mice. Clin Nutr. 2010;29:406-12.
Tabet N. Acetylcholinesterase inhibitors for Alzheimer's disease: anti-inflammatories in acetylcholine clothing! Age Ageing. 2006;35:336-8.
Takeda T, Hosokawa M, Takeshita S, Irino M, Higuchi K, Matsushita T, et al. A new murine model of accelerated senescence. Mech Ageing Dev. 1981;17:183-94.
Takeda T. Senescence-accelerated mouse (SAM) with special references to neurodegeneration models, SAMP8 and SAMP10 mice. Neurochem Res. 2009;34:639-59.
Taniguchi A, Yamanaka-Okumura H, Nishida Y, Yamamoto H, Taketani Y, Takeda E. Natto and viscous vegetables in a Japanese style meal suppress postprandial glucose and insulin responses. Asia Pac J Clin Nutr. 2008;17:663-8.
Tatum VL, Changchit C, Chow CK. Measurement of malondialdehyde by high performance liquid chromatography with fluorescence detection. Lipids. 1990;25:226-9.
Tha KK, Okuma Y, Miyazaki H, Murayama T, Uehara T, Hatakeyama R, et al. Changes in expressions of proinflammatory cytokines IL-1beta, TNF-alpha and IL-6 in the brain of senescence accelerated mouse (SAM) P8. Brain Res. 2000;885:25-31.
Valavanidis A, Vlachogianni T, Fiotakis C. 8-hydroxy-2' -deoxyguanosine (8-OHdG): A critical biomarker of oxidative stress and carcinogenesis. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2009;27:120-39.
Valavanidis A, Vlachogianni T, Fiotakis C. 8-hydroxy-2 -deoxyguanosine(8-OHdG): A Critical Biomarker of Oxidative Stress and Carcinogenesis. Journal of Environmental Science and Health. 2009;27:120–39.
Valko M, Izakovic M, Mazur M, Rhodes CJ, Telser J. Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem. 2004;266:37-56.
Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39:44-84.
Vanhoutte P, Bading H. Opposing roles of synaptic and extrasynaptic NMDA receptors in neuronal calcium signalling and BDNF gene regulation. Curr Opin Neurobiol. 2003;13:366-71.
Voss P, Siems W. Clinical oxidation parameters of aging. Free Radic Res. 2006;40:1339-49.
Wang F, Chen H, Sun X. Age-related spatial cognitive impairment is correlated with a decrease in ChAT in the cerebral cortex, hippocampus and forebrain of SAMP8 mice. Neurosci Lett. 2009;454:212-7.
Wang J, Xiong S, Xie C, Markesbery WR, Lovell MA. Increased oxidative damage in nuclear and mitochondrial DNA in Alzheimer's disease. J Neurochem. 2005;93:953-62.
Wang MF, Chan YC, Wu CL, Wong YC, Hosoda K, Yamamoto S. Effects of Ganoderma on aging and learning and memory ability in senescence accelerated mice. International Congress Series. 2004;1260:399-404.
Wilcock DM, Lewis MR, Van Nostrand WE, Davis J, Previti ML, Gharkholonarehe N, et al. Progression of amyloid pathology to Alzheimer's disease pathology in an amyloid precursor protein transgenic mouse model by removal of nitric oxide synthase 2. J Neurosci. 2008;28:1537-45.
Wu G, Fang YZ, Yang S, Lupton JR, Turner ND. Glutathione metabolism and its implications for health. J Nutr. 2004;134:489-92.
Yagi H, Akiguchi I, Ohta A, Yagi N, Hosokawa M, Takeda T. Spontaneous and artificial lesions of magnocellular reticular formation of brainstem deteriorate avoidance learning in senescence-accelerated mouse SAM. Brain Res. 1998;791:90-8.
Yang NC, Chou CW, Chen CY, Hwang KL, Yang YC. Combined nattokinase with red yeast rice but not nattokinase alone has potent effects on blood lipids in human subjects with hyperlipidemia. Asia Pac J Clin Nutr. 2009;18:310-7.
Yang XJ, Liu J, Ye LB, Yang F, Ye L, Gao JR, et al. In vitro and in vivo protective effects of proteoglycan isolated from mycelia of Ganoderma lucidum on carbon tetrachloride-induced liver injury. World J Gastroenterol. 2006;12:1379-85.
Yegenoglu H, Aslim B, Oke F. Comparison of Antioxidant Capacities of Ganoderma lucidum (Curtis) P. Karst and Funalia trogii (Berk.) Bondartsev & Singer by Using Different In Vitro Methods. J Med Food. 2011.
Young IS, Woodside JV. Antioxidants in health and disease. J Clin Pathol. 2001;54:176-86.
Yu CH, Kan SF, Shu CH, Lu TJ, Sun-Hwang L, Wang PS. Inhibitory mechanisms of Agaricus blazei Murill on the growth of prostate cancer in vitro and in vivo. J Nutr Biochem. 2009;20:753-64.
Zeng C, Lee JT, Chen H, Chen S, Hsu CY, Xu J. Amyloid-beta peptide enhances tumor necrosis factor-alpha-induced iNOS through neutral sphingomyelinase/ceramide pathway in oligodendrocytes. J Neurochem. 2005;94:703-12.
Zhou Y, Qu ZQ, Zeng YS, Lin YK, Li Y, Chung P, et al. Neuroprotective effect of preadministration with Ganoderma lucidum spore on rat hippocampus. Exp Toxicol Pathol. 2011.
Zhu XL, Chen AF, Lin ZB. Ganoderma lucidum polysaccharides enhance the function of immunological effector cells in immunosuppressed mice. J Ethnopharmacol. 2007;111:219-26.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔