(3.236.214.19) 您好!臺灣時間:2021/05/10 08:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:陳正杰
研究生(外文):Chen, ChengChieh
論文名稱:以Pure OpenMP、SPMD OpenMP、MPI及Hybrid MPI+OpenMP平行實作聲波方程式
論文名稱(外文):Implementation of Parallel Acoustic Wave Equation Using Pure OpenMP,SPMD OpenMP,MPI and Hybrid MPI+OpenMP
指導教授:翁添雄蔡奇偉
指導教授(外文):Weng, TienHsiungTsay, CheyWoei
口試委員:張西亞黃國展李冠憬
口試委員(外文):Chang, HsiYaHuang, KuoChanLi, KuanChing
口試日期:2011-06-16
學位類別:碩士
校院名稱:靜宜大學
系所名稱:資訊碩士在職專班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:58
中文關鍵詞:聲波方程式平行程式設計OpenMPSPMDMPI混合式
外文關鍵詞:Acoustic wave equationParallel programmingOpenMPSPMDMPIHybrid
相關次數:
  • 被引用被引用:1
  • 點閱點閱:390
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:47
  • 收藏至我的研究室書目清單書目收藏:0
這篇論文主要在實作一求解三維聲波方程式之程式碼並分析討論該程式平行化後之結果。首先利用數值分析中之差分方法,我們轉化三維聲波方程式成一離散解方程式,並以此離散解方程式實作出一循序的求解程式碼,然後分別在AMD OpteronTM 8200/Dell 6950機器上以Pure OpenMP和SPMD OpenMP平行化該循序的求解程式碼,並比較兩者之效能,以及在IBM Cluster 1350叢集電腦上比較以MPI和Hybrid MPI+OpenMP兩種方法實作出的平行程式之效能。實驗之結果顯示,四種平行方法在效能之提升上皆有所貢獻。
This thesis presents an implementation of a numerical solution for the acoustic wave equations and discusses the experimental results of the parallelized programs. First of all we use the finite difference scheme to numerically solve the acoustic wave equations and implement its sequential program for the solution. Then, the sequential program is parallelized using the following four types of parallel schemes: Pure OpenMP, SPMD OpenMP, MPI, and Hybrid MPI+OpenMP. We compare the performance of both Pure OpenMP and OpenMP SPMD parallel programs running on AMD OpteronTM 8200/Dell 6950 platform. And the performance of both MPI and Hybrid MPI+OpenMP parallel programs running on IBM Cluster 1350 systems is discussed as well. The experimental results of the four parallel schemes show promising with more performance improvements expected to be done.
誌謝………………………………………………………………………………………… ⅰ
中文摘要…………………………………………………………………………………… ⅱ
英文摘要…………………………………………………………………………………… ⅲ
目錄………………………………………………………………………………………… ⅳ
表目錄……………………………………………………………………………………… ⅴ
圖目錄……………………………………………………………………………………… ⅵ
一、緒論…………………………………………………………………………………… 1
1.1 動機與目的……………………………………………………………………… 1
1.2 背景知識………………………………………………………………………… 2
二、基本原理……………………………………………………………………………… 5
2.1 聲波方程式……………………………………………………………………… 5
2.2 有限差分法……………………………………………………………………… 5
2.3 離散化聲波方程式……………………………………………………………… 9
2.4 計算程序……………………………………………………………………… 11
2.5 聲波的穩定性及其數值頻散分析…………………………………………… 11
三、吸收邊界條件………………………………………………………………………… 13
3.1 吸收邊界條件的發展………………………………………………………… 13
3.2 Higdon 吸收邊界條件………………………………………………………… 14
四、程式模型……………………………………………………………………………… 18
4.1 程式實作……………………………………………………………………… 18
4.1.1 初始化………………………………………………………………… 18
4.1.2 計算內部格點值……………………………………………………… 19
4.1.3 計算邊界格點值……………………………………………………… 21
4.1.4 格點值輸出…………………………………………………………… 25
4.2 平行處理……………………………………………………………………… 27
4.2.1 Pure OpenMP……………………………………………………… 27
4.2.2 SPMD OpenMP……………………………………………………… 30
4.2.3 MPI…………………………………………………………………… 32
4.2.4 Hybrid MPI+OpenMP………………………………………………… 37
五、實驗結果……………………………………………………………………………… 40
5.1 時域有限差分聲波波動模型的計算輸出…………………………………… 40
5.2 平行實作之實驗結果………………………………………………………… 41
5.2.1 Pure OpenMP和SPMD OpenMP…………………………………… 42
5.2.2 MPI和Hybird MPI+OpenMP………………………………………… 44
六、結論…………………………………………………………………………………… 48
參考文獻…………………………………………………………………………………… 49

[1]Alford, R. M., Kelly, K. R., & Boore, D. M. (1974). Accuracy of finite-difference modeling of the acoustic wave equation. Geophysics, 39(6), 834-842.
[2]Berenger, J. P. (1994). A perfectly matched layer for the absorption of the electromagnetic waves. J. Comput. Phys., 114(2), 185-200.
[3]Chew, W. C., & Liu, Q. H. (1996). Perfectly matched layers for elastodynamics: a new absorbing boundary condition. J. Comp. Acoust.,4(4), 72-79.
[4]Claerbout, J. F. (1970). Coarse grid calculations of waves in inhomogeneous media with application to delineation of complicated seismicstructure. Geophysics, 35, 407-418.
[5]Clayton, R., & Engquist, B. (1977). Absorbing boundary condition for acoustic and elastic wave equations. Bull. Seism. Soc. Am.,67, 1529-1540.
[6]Clayton, R., & Engquist, B. (1980). Absorbing boundary condition for wave-equation migration. Geophysics, 45, 895-904.
[7]Dablain, M. A. (1986). The application of high-order differencing to the scalar wave equation. Geophysics, 51, 54-66.
[8]Halpern, L., & Trefethen, L. N. (1988). Wide-angle one-way wave equations. J. Acoust. Soc. Am., 84, 1397-1404.
[9]Herlihy, M., & Luchangco, V. (2008). Distributed computing and the multicore revolution. ACM SIGCAT News, 39(1), 62–72.
[10]Higdon, R. L. (1986) “Absorbing boundary conditions for difference approximations to the multi-dimensional wave equation. Math. Comp., 47, 437-459.
[11]Kelly, R. K., Ward, R. W., Treitel, Sven, & Alford, R. M. (1976). Synthetic seismograms: a finite-difference approach. Geophysics, 41(1), 2-27.
[12]Keys, R. G. (1985). Absorbing boundary conditions for acoustic media. Geophysics. 50, 892-902.
[13]Landau, Rubin (2007, March/April). Multicore processors for science and engineering, computing in science & engineering. Copublished by the IEEE CS and the AIP.
[14]Liu, Z., Chapman, B., Wen, Y., Huang L., Weng TH., & Hernandez, O. (2003). Analyses for the Translation of OpenMP Codes into SPMD Style with Array Privatization. In Proceedings of International Workshop on OpenMP Applications and Tools (WOMPAT), 244-259.
[15]Marowka, A. (2007). Parallel computing on any desktop. Comm. ACM, 50(9), 75–78.
[16]MPI Forum. MPI: A message-passing interface standard. Technical Report UT-CS-94-230, University of Tennessee, Knoxville, 1996.
[17]OpenMP Architecture Review Board. Fortran 2.0 and C/C++ 2.0 Specifications. At www.openmp.org
[18]Pacheco, P. S. (1995). Parallel Programming With MPI. University of San Franciso.
[19]Pankratius, V., Schaefer, C., Jannesari, A., & Tichy, W.F. (2008). Software engineering for multicore systems - an experience report. In: Proc, 1st Int. Workshop Multicore Software Engineering, Leipzig, 53–60. ACM Digital Library, New York.
[20]Quan, Qi, & Thomas, L. Geers (1998). Evaluation of the perfectly matched layer for computational acoustics. J. Comp. Phys. 139, 166-183.
[21]Smith, W. D. (1974). A non-reflecting plane boundary for wave propagation problems. J. Comput. Phys., 15, 492-503.
[22]Sterling, Thomas, Messina, Paul, & Smith, H. Paul (1995). Enabling Technologies for Petaflops Computing. MIT Press.
[23]Terentyev, Igor S. (2008, April). Framework design and implementation of finite difference based seismic simulations ( Master thesis). Rice University, Houston, Texas.
[24]Thomaszewski, B., Pabst, S., & Blochinger, W. (2008) Parallelism in physically-based simulations on multi-core processor architectures. Computers & Graphics 32(1), 25–40.
[25]Trefethen, L. N., & Halpern, L. (1986). Well-posedness of one-way wave equations and absorbing boundary conditions. Math. Comput., 47, 421-435.
[26]Virieux J. (1986). P-SV wave propagation in heterogenous media: Velocity-stress finite-difference method. Geophysics, 51, 889-901.
[27]Yuan, Xiaojuen, Borup, D., Wiskin, J. W., Berggren, M., Eidens, R., & Johnson, S. A. (1997, July). Formulation and validation of Berenger’s PML absorbing boundary for the FDTD simulation of acoustic scattering. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 44(4), 816-822.
[28]鄭守成 (民 91)。C語言MPI平行計算程式設計。取自http://mx.nthu.edu.tw/~jyhsu/Documents/mpic_2002.doc
[29] 王長清,祝西里(1993)。電磁場計算中的時域有限差分法。北京大學出版社。
[30] 孫濤(2009)。彈性波動方程式的有限差分數值方法。清華大學出版社。
[31] 黃文武(2005)。彈性波和聲波的時域仿真方法研究(碩士論文)。天津大學。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔