跳到主要內容

臺灣博碩士論文加值系統

(44.211.26.178) 您好!臺灣時間:2024/06/15 02:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張貝瑜
研究生(外文):Chang, Peiyu
論文名稱:以Pt/In2O3-WO3材料應用於一氧化氮氣體感測器
論文名稱(外文):Application Pt/In2O3-WO3 as materials for nitric oxide sensor
指導教授:吳仁彰
指導教授(外文):Wu, Renjang
口試委員:葉君隸汪成斌何珮華
口試委員(外文):Ye, JunliWang, chengbinHe, Peihua
口試日期:2011-06-30
學位類別:碩士
校院名稱:靜宜大學
系所名稱:應用化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:69
中文關鍵詞:氣體感測器一氧化氮鉑摻雜
外文關鍵詞:gas sensornitric oxidePt doping
相關次數:
  • 被引用被引用:4
  • 點閱點閱:418
  • 評分評分:
  • 下載下載:32
  • 收藏至我的研究室書目清單書目收藏:0
本研究以含浸法製備雙金屬氧化物複合材料In2O3-WO3,將感測材料以手工塗附於一網印金電極的氧化鋁基板上作為一氧化氮感測器。在實驗中,藉由混合In2O3和WO3時重量百分比的改變,以及摻雜鉑金屬的量與鍛燒溫度的變化,以得到對一氧化氮有最佳感測效果的材料。利用程溫還原系統(Temperature-Programmed Reduction, TPR)、X光繞射儀(X-Ray Diffraction, XRD)、穿透式電子顯微鏡(Transmission Electron Microscope,TEM)對感測材料進行定性分析。
研究結果得知,材料的重量比In2O3-WO3 = 4:1時最佳,在室溫下對1000 ppm一氧化氮的感測訊號(S=RNO/RN2)為23.9,反應時間(response time)T90 = 12.5(min),TR90 = 15.3(min)。而加入0.25% Pt時,在偵測0.5 ppm一氧化氮可得感測訊號為330,T90 = 10.5(min),TR90 = 132(min)。優點在於實驗時在室溫下就可偵測,量測的濃度範圍為25-500 ppb。

This study In2O3-WO3 using impregnation method, the sensor material will be covered in a web printing gold electrode on alumina substrate as a nitric oxide sensor. In the experiment, change the amount of In2O3 and WO3 to get different weight ratio, we change the amount of platinum doping and calcinations temperature, to get the material which has the best effect of nitric oxide sensing. The prepared samples were characterized by Temperature-Programmed Reduction (TPR), X-Ray Diffraction (XRD), Transmission Electron Microscope (TEM) techniques.
From experimental results, we fine that In2O3-WO3(1:4) better than other materials. The sensitivity(S= RNO/RN2) of detection 1000ppm nitric oxide in room temperature(S= 23.9) in the study, response time(T90) and recover time(TR90) are 12.5 and 15.3 minutes. If we added 0.25% Pt in materials the sensitivity of detection 0.5 ppm nitric oxide will up to 330, response time and recover time are 10.5 minutes and 2.2 hours. The sensing range is 25-500 ppb in room temperature.

目錄
謝誌.....I
中文摘要.....II
英文摘要.....III
目錄.....IV
圖目錄.....VIII
表目錄.....XI

第一章 緒論.....1
1-1 一氧化氮的簡介.....1
1-2 氣喘的簡介.....3
1-2.1 氣喘的定義.....3
1-2.2 氣喘的盛行率.....3
1-2.3 氣喘與吐氣一氧化氮的關係.....4
1-3 一般氣體感測器的種類.....6
1-3.1 電化學氣體感測器.....6
1-3.2 固態電解質氣體感測器.....6
1-3.3 觸媒燃燒式氣體感測器.....6
1-3.4 半導體氣體感測器......7
1-4 氣體感測的原理.....8
1-5 感測材料的簡介.....10
1-5.1 WO3之基本性質.....10
1-5.2 In2O3之基本性質.....11
1-6 文獻回顧.....13
1-7 研究目的.....22
第二章 實驗.....23
2-1 實驗儀器與藥品.....23
2-2 樣品製備方法.....25
2-2.1 In2O3-WO3樣品製備.....25
2-2.2 In2O3-WO3混入金屬材料製備.....26
2-3 製作NO感測器.....27
2-4 氣體感測實驗.....28
2-5 樣品鑑定......32
2-5.1 程溫還原系統.....32
2-5.2 X光繞射儀.....34
2-5.3 穿透式電子顯微鏡.....35
第三章 結果與討論.....37
3-1 感測材料的定性分析.....37
3-1.1 感測材料的程溫還原分析.....37
3-1.2 感測材料的XRD圖譜.....39
3-1.3 感測材料的TEM圖譜.....43
3-2 感測曲線.....47
3-2.1 以不同比例的In2O3-WO3為材料的感測曲線.....47
3-2.2 0.125 %Pt/ In2O3-WO3(4:1)於不同鍛燒溫度的感測結果......50
3-2.3 摻雜不同濃度Pt於In2O3-WO3(4:1)的感測曲線.....52
3-2.4 0.25 %Pt/ In2O3-WO3(4:1)於不同濃度的感測結果.....54
3-3 干擾性的測試......56
3-4 反應機構......59
第四章 結論.....65
第五章 未來展望 .....66
參考文獻.....67


[1]S. Moncada, R. M. Palmer, E. A. Higgs. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacological Reviews, 1991; 43: 109-42.
[2]L. J. Ignarro, R. E. Byrns, G. M. Buga, K. S. Wood. Endothelium-derived relaxing factor from pulmonary artery and vein possesses pharmacologic and chemical properties identical to those of nitric oxide radical. Circulation Research, 1987; 61: 866-79.
[3]M. A. Marletta. Nitric Oxide Synthase: Aspects Concerning Structure and Catalysis. Cell, 1994; 78: 927-930.
[4]W. K. Alderton, C. E. Cooper, R. G. Knowles. Nitric oxide synthases : structure, function and inhibition. Biochemistry Journal, 2001; 357: 593-615.
[5]洪仁宇,黃吉志。氣喘的定義及診斷。高醫醫訊月刊19卷10期,1999.
[6]方文輝,莊明憲,陳永煌,劉紹興,周稚傑。從全民健保資料分析台灣地區之氣喘治療現況。中華職業醫學雜誌,2007; 14(2): 77-85.
[7]吳家興,林瑞雄,謝貴雄,邱文達,陳麗美,邱淑媞,黃國晉,劉文良,劉宏毅,蕭慧娟,方淑慧,陳雄文,林嘉明,宋鴻樟。台灣北部學生氣喘盛行率調查。中華衛誌,1998; 17: 214-225.
[8]J. Saito, K. Inoue, A. Sugawara, M. Yoshikawa, K. Watanabe, T. Ishida, Y. Ohtsuka, M. Munakata. Exhaled nitric oxide as a marker of airway inflammation for an epidemiologic study in Schoolchildren. Journal of Allergy and Clinical Immunology, 2004; 14: 512-516.
[9]O. Torre, D. Olivieri, P. J. Barnes, S. A. Kharitonov. Feasibility and interpretation of FENO measurements in asthma patients in general practice. Respiratory Medicine, 2008; 102: 1417-1424.
[10]王畯閎。氧化銦錫添加三氧化鎢薄膜之研究。國立中央大學,碩士論文,民國95年。
[11]曾浩鈞。氧化銦摻雜鈷之磁、電性質研究。國立成功大學,碩士論文,民國97年。
[12]黃炳淮。以超音波霧化法摻雜氧化銦薄膜之光電性質研究。國立中山大學,碩士論文,民國91年。
[13]T. S. Kim, Y. B. Kim, K. S. Yoo, G. S. Sung, H. J. Jung. Sensing characteristics of dc reactive sputtered WO3 thin films as an NOx gas sensor. Sensors and Actuators B, 2000; 62: 102–108.
[14]S. Barazzouk, R. P. Tandon, S. Hotchandani. MoO3-based sensor for NO, NO2 and CH4 detection. Sensors and Actuators B, 2006; 119: 691–694.
[15]S. C. Navale, V. Ravi, I. S. Mulla, S. W. Gosavi , S. K. Kulkarni. Low temperature synthesis and NOx sensing properties of nanostructured Al - doped ZnO. Sensors and Actuators B, 2007; 126: 382–386.
[16]C. Y. Lin, Y. Y. Fang, C. W. Lin, J. J. Tunney, K. C. Ho. Fabrication of NOx gas sensors using In2O3 – ZnO composite films. Sensors and Actuators B, 2010; 146: 28–34.
[17]S. Kannan, H. Steinebach, L. Rieth, F. Solzbacher. Selectivity, stability and repeatability of In2O3 thin films towards NOx at high temperatures (≥500 ◦C). Sensors and Actuators B, 2010; 148: 126–134.
[18]T. Ueda, M. M. H. Bhuiyan, H. Norimatsu, S. Katsuki, T. Ikegami, F. Mitsugi. Development of carbon nanotube-based gas sensors for NOx gas detection working at low temperature. Physica E, 2008; 40: 2272–2277.
[19]M. Chen, J. Xu, Y. Cao, H. Y. He, K. N. Fan, J. H. Zhuang. Dehydrogenation of propane over In2O3 – Al2O3 mixed oxide in the presence of carbon dioxide. Journal of Catalysis, 2010; 272: 101–108.
[20]C. Bigey, L. Hilaire, G. Maire. Catalysis on Pd/WO3 and Pd/WO2: Effect of the modifications of the surface states due to redox treatments on the skeletal rearrangement of hydrocarbons. Journal of Catalysis, 1999; 184: 406–420.
[21]G. Olofsson, L. R. Wallenberg, A. Andersson. Selective catalytic oxidation of ammonia to nitrogen at low temperature on Pt/CuO/Al2O3. Journal of Catalysis, 2005; 230: 1–13.
[22]C. K. Chang, Y. J. Chen, C. Yeh. Characterizations of alumina-supported gold with temperature-programmed reduction. Applied Catalysis A: General, 1998; 174: 13-23.
[23]M. Penza, C. Martucci, G. Cassano. NOx gas sensing characteristics of WO3 thin films activated by noble metals (Pd, Pt, Au) layers. Sensors and Actuators B, 1998; 52–59.
[24]I. Kocemba, J. Rynkowski. The influence of catalytic activity on the response of Pt/SnO2 gas sensors to carbon monoxide and hydrogen. Sensors and Actuators B, 2011: xxx: xxx–xxx.
[25]M. Zhang, Z. Yuan, J. Song, C. Zheng. Improvement and mechanism for the fast response of a Pt/TiO2 gas sensor. Sensors and Actuators B, 2010; 148: 87–92.
[26]S. J. Chang, W. Y. Weng, C. L. Hsu, T. J. Hsueh. High sensitivity of a ZnO nanowire-based ammonia gas sensor with Pt nano-particles. Nano Communication Networks, 2010; 1: 283–288.
[27]B. Klingenberg, M. A. Vannice. NO adsorption and decomposition on La2O3 studied by DRIFTS. Applied Catalysis B: Environmental, 1999; 21: 19-33.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top