(3.238.173.209) 您好!臺灣時間:2021/05/09 16:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:張乃方
研究生(外文):Chang, Nai-Fang
論文名稱:二氧化鈦和氧化鋅防曬劑之自由基發生與抑制研究
論文名稱(外文):Free Radical Formation and Inhibition of TiO2 and ZnO Sunscreens
指導教授:官常慶官常慶引用關係
指導教授(外文):Kwan, Chang-Chin
口試委員:黃克峰王銘富李淑美邱文慧
口試委員(外文):Huang, Keh-FengWang, Ming-FuLee, Shu-MeiChiu, Wen-Hui
口試日期:2011-07-21
學位類別:博士
校院名稱:靜宜大學
系所名稱:應用化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:108
中文關鍵詞:二氧化鈦氧化鋅氫氧自由基光催化反應水楊酸乳化包覆載體
外文關鍵詞:Titanium dioxideZinc oxideHydroxyl radicalPhotocatalysisSalicylic acidEmulsionEncapsulation
相關次數:
  • 被引用被引用:1
  • 點閱點閱:689
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:50
  • 收藏至我的研究室書目清單書目收藏:0
二氧化鈦與氧化鋅廣用於化粧保養品中做為防曬劑,過於微細化的顆粒於照射紫外線時有引發自由基反應之虞,本研究以水楊酸捕捉光催化反應生成的氫氧自由基,檢測反應產物2,3-Dihydroxybenzoic Acid、2,5-Dihydroxybenzoic Acid、Catechol而獲知化粧品防曬劑的自由基生成情形。
選擇五種市售防曬化粧品常用的二氧化鈦為研究標的,與未做表面處理的試藥級二氧化鈦做比較,在水分散情形下均可發現氫氧自由基生成,銳鈦礦型或混合晶相結構者具倍增的生成量,同樣有光催化效能。值得注意的是,奈米級微粒二氧化鈦的自由基生成量與一般銳鈦礦型相近或更高,含有10%此種粉末的水分散液有高達385ppm的水楊酸消耗量,也就是說粒徑愈小的二氧化鈦愈有產生自由基危害的可能性的。
透過加入油相製成乳化液可有抑制氫氧自由基生成的效果,金紅石型二氧化鈦若配製成O/W劑型甚至可將生成量降到幾近為零,這個現象對於同是物理性防曬劑的氧化鋅也適用。氧化鋅具有較低的光催化活性,在水分散型樣品中的行為類似紅石型二氧化鈦,含有10%氧化鋅粉末的水分散液約有80ppm的水楊酸消耗量,不過經乳化後幾乎可以抑制自由基的發生。
除了製成乳化液的保護方式外,適當的包覆層可使防曬效能較不受外在環境的影響,是製做長效型防曬產品的優良選擇。原本透過乳化劑型做保護已使水楊酸消耗量降低很多,若再以矽酸四乙酯做包覆層,還可以繼續降低一些,雖無法大幅銳減,仍能說明矽酸四乙酯的包覆層確有保護力。若將乳化液照射陽光數週的時間後,發現SPF值的呈現幾乎可以保持恆定,由此也證明適當的包覆層可以提供優良的保護特性,使防曬效能不因照射陽光而衰退過劇。
Titanium dioxide and zinc oxide widely use as sunscreens in cosmetics. The fine particles are the risk of triggering free radical reactions under ultraviolet light. In this experiment, salicylic acid is used to capture the hydroxyl radical after photocatalysis reaction. The free radical formation is obtained through detecting the reaction products of 2,3-dihydroxylbenzoic acid, 2,5-dihydroxybenzoic acid and catechol.
Five kinds of commercial titanium dioxide are compared with those which have not any surface treatment. All of them can be found hydroxyl radical after reaction in aqueous dispersion. Titanium dioxide with anatase type or mixed crystal structure has doubled the amount of hydroxyl radical formation. It is noteworthy that nano-particles of titanium dioxide have similar or higher hydroxyl radical formation than anatase type. It has a consumption of salicylic acid up to 385ppm in 10% dispersion. The smaller particle size of titanium dioxide, the more the possibility of harmful free radicals.
By adding oil phase to make titanium dioxide emulsion, hydroxyl radical formation can be inhibited. If the preparation of rutile titanium dioxide into the O/W formulations, hydroxyl radical formation can even be reduced to nearly zero. This phenomenon is the same for zinc oxide as physical sunscreen. Zinc oxide has a lower photocatalytic activity like what rutile titanium dioxide act in aqueous dispersion. It has a consumption of salicylic acid about 80ppm in 10% dispersion. However, hydroxyl radical can be almost inhibited by making emulsion.
Beside protection by emulsion, a proper encapsulation is also suitable for long-term sunscreen products, because it can avoid external environmental interference. The encapsulation of tetraethyl orthosilicate (TEOS) can even more reduce the consumption of salicylic acid than emulsion formulations can do. Although not significantly bring down, tetraethyl ortho- silicate encapsulation still shows a good protection. Exposuring to the sun for a few weeks, the SPF value of TEOS emulsion is almost constant. It can be proved that a proper encapsulation can protect the sunscreen from excessive decay.
中文摘要
英文摘要
目錄
表目錄
圖目錄
壹、緒論
1-1前言
1-2具防曬功效的化粧保養品
1-3奈米科技的新興應用
1-4二氧化鈦簡介
1-5自由基與自由基反應
1-6氫氧自由基的產生與測定
1-7奈米包覆載體
貳、材料與方法
2-1試藥與溶劑
2-2儀器設備
2-3實驗方法
參、結果與討論
3-1測試樣品的定性與定量
3-2二氧化鈦的自由基表現
3-3氧化鋅的自由基生成量
3-4二氧化鈦與包覆層的關連性
3-5幾丁聚醣包覆製程與包覆情形
肆、結論
伍、參考文獻
1. 政府出版品,化粧品含有醫療或毒劇藥品基準,行政院衛生署食品藥物管理局,2010。
2. Steinberg D., “Frequency of Use of Organic UV Filters as Reported to the FDA”, Cosmetics & Toiletries, 118(10), 2003, 81-83.
3. Sclafani A.; Palmisano L.; Schiavello M., “Influence of the Preparation Methods of Titanium Dioxide on the Photocatalytic Degradation of Phenol in Aqueous Dispersion” J. Phys. Chem., 94(2), 829-832, 1990.
4. Sopyan I.; Watanabe M.; Murasawa S., et al., “Efficient TiO2 Powder and Film Photocatalysts with Rutile Crystal Structure”, Chem. Lett., 25(1), 69-70,1996.
5. Schueller R.; Romanowski P., “The ABCs of SPFs: An Introduction to Sun Protection Products”, Cosmet Toil, 114(9), 49-57, 1999.
6. 簡國明、洪長春、吳典熹、王永銘、藍怡平,奈米二氧化鈦專利地圖及分析,行政院國家科學委員會科學技術資料中心,2003。
7. Diebold U., “The Surface Science of Titanium Dioxide”, Surface Science Report, 48, 53-299, 2003.
8. Zepp R.G., “Factors Affecting the Photochemical Treatment of Hazardous Waste”, Environ. Sci. & Technol., 22(3), 256-257, 1988.
9. Linsebigler A.L.; Lu G.; Yates J.T., “Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results”, Chem.Rev., 95, 735-738, 1995.
10. Rominder P.S.; Lin J.; Hand D.W.; Crittenden J.C.; Perram D.L. and Mulins M.E., “Heterogeneous Photocatalytic Oxidation of Hazardous Organic Contaminants in Water”, Waer Environ. Res., 65(5), 655-673, 1993.
11. 高濂、鄭珊、張青紅,奈米光觸媒,五南出版:台北,2004。
12. Anpo M; Shima T.; Kodama S.; Kubokawa Y., “Photocatalytic Hydrogenation of CH3CCH with H2O on Small Particle TiO2 Size Quantization Effects and Reaction Intermediates”, J. Phys. Chem., 91, 4305-4310, 1987.
13. Jen F.J., “Determination of Hydroxyl Radicals in an Advanced Oxidation Process with Salicylic Acid Trapping and Liquid Chromatography”, J. Chromatogr. A, 796(2), 283-288, 1998.
14. Harada H; Ueda T.; Sakata T., “Semiconductor Effect on the Selective Photocatalytic Reaction of alpha-Hydroxycarboxylic Acids”, J. Phys. Chem., 93, 1542-1548, 1989.
15. Abdullah M.; Low Gary K.C.; Matthewa R.W., “Effects of Common Inorganic Anions on Rates of Pphotocatalytic Oxidation of Organic Carbon over Illuminated Titanium Dioxide”, J. Phys. Chem., 94(17), 6820-6825, 1990.
16. 張慧柔,新防曬係數的應用,行政院國家科學委員會專題研究計劃成果報告,2003。
17. Huang R.L.; Goh S.H.; Ong S.H., “The Chemistry of Free Radicals”, Edward Arnold, 1974.
18. 孫存普、張建中、段紹瑾,自由基生物學導論,中國科學技術大學出版社:合肥,1999。
19. 龐戰軍、周玫、陳璦,自由基醫學研究方法,人民衛生出版社:北京,2000。
20. Fenton H.J.H. “Oxidation of Tartaric Acid in the Presence of Ion” J. Chem. Soc., 65, 899-910, 1894.
21. Fenton H.J.H. “Oxidation of Certain Acid in the Presence of Ferrous Salts” Proc. Chem. Soc., 15, 224-228, 1899.
22. Eberhatdt M.K., “Radiation-induced Hemolytic Aromatic Substitution. Ⅳ. Effect of Metal Ions on the Hydroxylation of Nitrobenzene”, J. phys. Chem., 79, 1913-1916, 1975.
23. Oturan M.A.; Pison J., “Hrydrxylation by Electrochemically Generated .OH Radicals. mono- and Polyhydroxylation of Benzoic Acid: Products and Isomers’ Distribution”, J. Phys. Chem, 99, 13948-13954 , 1995.
24. Oturan M.A.; Pison J., “Polyhydroxylation of Salicylic Acid by Electrochemically Generated .OH Radicals”, New J. Chem., 16, 705-710, 1992.
25. Nagaveni K.; Sivalingam G.; Hegde M.S.; Madras G., “Photocatalytic Degradation of Organic Compounds over Combustion- Synthesized Nano-TiO2”, Environ. Sci.&Technol., 38(5), 1600-1604, 2004.
26. Li B.; Gutierrez P.L.; Blough N.V., “Trace Determination of Hydroxyl Radical in Biological Systems”, Anal. Chem., 69, 4295-4302, 1997.
27. Kaur H.; Halliwell B., “Aromatic Hydroxylation of Phenylalanine as an Assay for Hydroxyl Radicals”, Anal. Biochem., 220, 11-15, 1994.
28. Diez L.; Livertoux M.-H.; Stark A.-A.; Wellman-Rousseaua M.; Leroya P., “High-Performance Liquid Chromatographic Assay of Hydroxyl Free Radical Using Salicylic Acid Hydroxylation During in Vitro Experiments Involving Thiols”, J. Chromatogra. B, 763, 185-193, 2001.
29. Ken I.I., “Detection of Active Oxidative Species in TiO2 Photocatalysis Using the Fluorescence Tecnique”, Electrochemistry Communications, 2, 207-210, 2000.
30. Halliwell B.; Kaur H.; Ingelman-Sundberg M., “Hydroxylation of Salicylate as an Assay for Hydroxyl Radicals: a Cautionary Note”, Free radic Biol. Med., 10, 439-441, 1991.
31. Singh S.; Hider R.C., “Cororimetric Detection of the Hydroxyl Radical: Comparison of the Hydroxyl-radical-generation Ability of Various Iron Complexes”, Anal.Biochem., 171, 47-54, 1988.
32. Steiner M.G.; Babbs C.F., “Quantitation of the Hydroxyl Radical by Reaction with Dimethyl Sulfoxide”, Arch. Biochem. Biophys., 278(2), 478-481, 1900.
33. Reis C.P., Neufeld R.J., Ribeiro A.J., Veiga F., “Nanoencap- sulation I. Methods for Preparation of Drug-loaded Polymeric Nano- particles”, Nanomed. Nanotech. Biol. Med., 2(1), 8-21, 2006.
34. Arshady R., “Microspheres and Microcapsules: A Survey of Manufacturing Techniques. Part 1: Suspension Cross-Linking”, Polym. Eng. Sci., 29(24), 1746-1758, 1989.
35. 宋健、陳磊、李效軍,微膠囊化技術及應用,化學工業出版社:北京,2001。
36. Pandey R.; Ahmad Z.; Sharma S.; Khuller G.K., “Nano- encapsulation of Azole Antifungals: Potential Applications to Improve Oral Drug Delivery”, Int. J. Pharm., 301, 268-276, 2005.
37. Lopez-Quintela A.M.; Rivas J., “Chemical Reactions in Micro- emulsion: A Powerful Method to Obtain Ultrafine Particles”, J. Colloid Interface Sci., 158, 446-451, 1993.
38. Brannon-Peppas L., “Recent Advances on the Use of Biodegra- dable Microparticles and Nanoparticles in Controlled Drug Delivery”, Int. J. Pharm., 116, 1-9, 1995.
39. Choi S.W.; Kwon H.Y.; Kim W.S.; Kim J.H., “Thermodynamic Parameters on Poly(D,L-lactide-co-glycolide) Particle Size in Emulsification-Diffusion Process”, Colloids Surf. A Physicochem. Eng. Aspects, 201, 283-289, 2002.
40. Zhang L.; Hu Y.; Jiang X.; Yang C.Z., Lu W., Yang Y.H., “Camptothecin Derivative-loaded Poly(caprolactone-co-lactide)-b- PEG-b-poly(caprolactone-co-lactide) Nanoparticles and their Bio- distribution in Mice” J. Control. Release, 96, 135-148, 2004.
41. des Rieux A.; Fievez V.; Garinot M.; Schneider Y.-J.; Préat V., “Nanoparticles as Potential Oral Delivery Systems of Proteins and Vaccines: A Mechanistic Approach” J. Control. Release, 116, 1-27, 2006.
42. Hejazi R.; Amiji M., “Chitosan-based Gastrointestinal Delivery Systems”, J. Control. Release, 89, 151-165, 2003.
43. Rinaudo M., “Chitin and Chitosan: Properties and Applications”, Prog. Polym. Sci., 31, 303-632, 2006.
44. Singh R.K.; Garg A.; Bandyopadhyaya R.; Mishra B.K., “Density Fractionated Hollow Silica Microspheres with High-yield by non-Polymeric Sol-gel/Emulsion Route”, Colloids and Surfaces A: Physicochem. Eng. Aspects, 310, 39-45, 2007.
45.熊珮如,化粧品級TiO2生成自由基之研究,靜宜大學應用化學系碩士論文,2007。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔