(3.236.222.124) 您好!臺灣時間:2021/05/14 15:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:謝穎杰
研究生(外文):Hsieh, Ying - Chieh
論文名稱:摻雜氮增強二氧化鈦在可見光下的光觸媒活性之分解水製氫
論文名稱(外文):Enhanced visible light photocatalytic activity of N-doped TiO2 for hydrogen production from water splitting
指導教授:吳仁彰
指導教授(外文):Wu, Ren - Jang
口試委員:葉君棣汪成斌何珮華
口試委員(外文):Yeh, Chuin-TihWang, Chen-BinHo, Pei-Hua
口試日期:2011-06-30
學位類別:碩士
校院名稱:靜宜大學
系所名稱:應用化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:84
中文關鍵詞:可見光光觸媒二氧化鈦
外文關鍵詞:N-dopedTiO2
相關次數:
  • 被引用被引用:0
  • 點閱點閱:175
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要目的是製備二氧化鈦光觸媒,使光觸媒在可見光範圍內的波長能夠作用,實驗中製備了一系列的N-TiO2光觸媒,並且利用含浸法將Pt離子含浸在二氧化鈦之表面,讓原本二氧化鈦的特性之激發波長380 nm可以往較長波的方向位移,也能夠使氫氣產率獲得良好的提升。
整個實驗系統是以400 W的高壓水銀燈作反應光源,並且使用客製訂作的鍍膜濾光片(UV cut / Pass filter),可以濾掉400 nm以下的波長,來確保實驗中探討的光源皆是在可見光區裡面。反應器的材質為Pyrex玻璃,反應時會裝有250 mL 10 vol%之甲醇水溶液以及0.5 g的光觸媒。
實驗結果指出光催化製氫實驗中加入的甲醇犧牲試劑對於製氫有顯著的輔助。利用EPR、UV-Vis分光光譜儀等等儀器測定觸媒的物性,說明添加的材料確實改變了觸媒原有的性質。經過嘗試各種變因,發現在N/Ti= 10、 0.05 wt% Pt/N-TiO2的條件下,能夠達到最高的製氫能力,其單位時間產率為772 μmol/h.g。

The purpose of this research is chiefly about prepare TiO2 photocatalysis which can work under visible light. The study is prepared a series of N-TiO2 photocatalysis and impregnate the surface of N-TiO2 with platinum cation. The excitation wavelength of TiO2 is 380 nm could be shifted to long wavelength and improve the yield of hydrogen production.
The study focus the energy conversion efficiency in the visible
light region which use a 400 W mercury arc lamp combined with a 400 nm cutoff filter that filter out all the wave under 400 nm. 0.5 g potocatalysis perform water splitting reaction in 250 ml 10 vol% methanol solution in Pyrex glass reactor.
The results show sacrificial reagent the useful application of hydrogen production. The TiO2 is doped which assay the physical function with EPR、UV-Vis and other apparatus to prove the TiO2 be changed. Many factors is tried out and get a best condition to hydrogen production. When system condition for N/Ti= 10、0.05 wt% Pt/N- TiO2, we could get the best hydrogen production rate obtained through water splitting is about 772 μmol/h.g.

中文摘要 II
Abstract III
謝誌 IV
目錄 V
圖目錄 VIII
表目錄 XI
第一章緒論 1
1-1前言 1
1-2觸媒介紹 5
1-2-1二氧化鈦(TiO2)簡介 5
1-2-2碳酸氨 8
1-2-3鉑金屬簡介 9
1-3光催化反應 10
1-3-1文獻回顧 10
1-3-2光催化實驗原理 24
1-3-3犧牲試劑(sacrificial reagent) 27
1-4研究目的 28
第二章、實驗方法 29
2-1實驗藥品 29
2-2材料定性貴重儀器介紹 30
2-2-1 X光繞射分析儀(X-ray Diffraction,XRD) 30
2-2-2穿透式電子顯微鏡(Transmission Electron Microscope,TEM) 34
2-2-3程溫還原分析儀(Temperature-programmed reduction,TPR) 37
2-2-4電子順磁共振儀(Electron paramagnetic resonance,EPR) 39
2-2-5積分球 UV-visble 分光光譜儀 41
2-3實驗儀器 43
2-3-1光催化實驗使用的光源 43
2-3-2氣相層析儀GC-TCD 44
2-3-3光催化實驗步驟 45
2-3-4氫氣校正檢量線 49
2-4觸媒製備流程 51
2-4-1. N-doped TiO2製備流程 51
2-4-2. N-doped TiO2含浸Pt金屬流程 52
第三章實驗數據討論 53
3-1. XRD繞射圖譜 53
3-2. TEM穿透式電子顯微鏡圖 55
3-3. TPR程溫還原實驗 61
3-4. EPR電子順磁共振儀實驗結果 63
3-5. UV-Vis分光光譜儀分析 66
3-6光觸媒實驗結果 69
3-6-1改變不同觸媒克數實驗結果 69
3-6-2 光觸媒含浸不同貴重金屬的實驗結果 70
3-6-3光觸媒含浸不同Pt比例的實驗結果 71
3-6-4 光觸媒摻雜不同N/Ti比例的實驗結果 72
3-6-5 光催化實驗犧牲試劑不同用量的實驗結果 73
3-7反應機構討論 74
第四章、結論 76
未來展望 78
參考文獻 79



[1]李宏台, "生質能源利用展望",化工技術,(2004)十月號,第12卷第10期,第99-109頁。
[2]張嘉修、李國興、林屏杰, "生物技術在廢水資源化之利用",環保月刊,(2002)八月號,第2卷第8期,第150-159頁。
[3]曲新生、陳發林編著,氫能技術 The Hydrogen Technology,(2006)。
[4]毛宗強編著,張勝雄,管鴻,林矩民,王鴻猷編修,氫能-21世紀的綠色能源,(2008)。
[5]A. Fujishima, K. Honda, “Electrochemical photolysis of water at a semiconductor electrode”, Nature, 238(1972)37-38.
[6]T. Sreethawong, S. Yoshikawa, “Enhanced photocatalytic hydrogen evolution over Pt supported on mesoporous TiO2 prepared by single-step sol–gel process with surfactant template”, International Journal of Hydrogen Energy, 31(2006)786–796.
[7]R.J. Wu, Y.D. Ju, and C.C. Jeng, “Promotion of Generation of Hydrogen by Splitting of Water by CNT Over Pt/TiO2 Catalysts”, Journal of anoscience and Nanotechnology, 10(2010)1-8.
[8]A. Kudo, I. Tsuji, Hideki Kato, “AgInZn7S9 solid solution photocatalyst for H2 evolution from aqueous solutions under visible light irradiation”, Chem. Commun, (2002)1958–1959.
[9]J. Livage, C. Sanchez, M. Henry and S. Doeuff, “The chemistry of theSol-Gel process”, Solid State Ion. , 32/33 (1989) 633-638.
[10]H. Yin, Y. Wada, T. Kitamura, S. Kambe, S. Murasawa, H. Mori, T.Sakata and S. Yanagida, “Hydrothermal synthesis of nanosized anatase and rutile TiO2 using amorphous phase TiO2”, J. Mater. Chem ., 11 (2001) 1694-1703.
[11]S.R. Dhage, Renu Pasricha, V. Ravi, “Synthesis of ultrafine TiO2 bycitrate gel method”, Mater. Res. Bull. , 38 (2003) 1623-1628.
[12]Y. Takahashi, Y. Matsuoka, “Dip-coating of TiO2 films using a Sol derived form Ti(O-i-Pr)4-diethanolamine-H2O-i-PrOH system”, J. Mater. Sci. , 23 (1988) 2259-2266.
[13]M. AlguerÓ, M. L. Calzada, C. Quintana and L. Pardo, “Ferroelectricity of lanthanum-modified lead titanate thin films obtained by a diol-based Sol-Gel method”, Appl. Phys. , A68 (1999) 583-592.
[14]AL. Linsebigler, G. Lu, JT Yates Jr, “Photocatalysis on TiO2 Surface: q Principles, Mechanisms, and Selected Results” , Chemical Review, 95(1995)735-758.
[15]Dengwei Jing, Liejin Guo, “Efficient solar hydrogen production by photocatalytic water splitting: From fundamental study to pilot demonstration”, International journal of hydrogen energy ,XXX(2010)1-11
[16]R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, “Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides”, Science, 293(2001)269–271.
[17]J.Yuan, M. Chen, J. Shi,W. Shangguan. “Preparations and photocatalytic hydrogen evolution of N-doped TiO2 from urea and titanium tetrachloride”, International Journal of Hydrogen Energ , 31 (2006)1326-1331.
[18]H.J.F. Jansen, A. J. Freeman, “Total energy full potential linearized augmented plane wave (FLAPW) method for bulk solids: electronic and structural properties of tungsten”, Phys. Rev., B30(1984) 561-569.
[19]洪茂德,”鉑觸媒之催化性質:嫁接TiO2之角色” ,國立中正大學碩士論文,(2005)。
[20]曲新生、陳發林、呂錫民編著,產氫與儲氫技術 The hydrogen production and storage technology,(2007)。
[21]A. Kudo, “Development of photocatalyst materials for water splitting”, International Journal of Hydrogen Energy, 31(2006) 197-202.
[22]K. Sayamaa, K. Mukasab, R. Abea, Y. Abeb, H. Arakawa, “A new photocatalytic water splitting system under visible light irradiation mimicking a Z-scheme mechanism in photosynthesis”, Journal of Photochemistry and Photobiology A: Chemistry, 148(2002)71–77.
[23]J. Ye , Z. Zou , M. Oshikiri , A. Matsushita, M. Shimoda, M. Imai, T. Shishido, “A novel hydrogen- evolving photocatalyst InVO4 active under visible light irradiation”, Chemical Physics Letters, 356(2002) 221–226.
[24]D. Wang , Z. Zou , J. Ye, “A new spinel-type photocatalyst BaCr2O4 for H2 evolution under UV and visible light irradiation”, Chemical Physics Letters, 373(2003)191–196.
[25]J. Ye, Z. Zou, A. Matsushita, “A novel series of water splitting photocatalysts NiM2O6 (M = Nb; Ta) active under visible light”, International Journal of Hydrogen Energy, 28(2003)651–655.
[26]Z. Zou, H. Arakawa, “Direct water splitting into H2 and O2 under visible light irradiation with a new series of mixed oxide semi- conductor photocatalysts”, Journal of Photochemistry and Photobiology A: Chemistry, 158(2003)145–162.
[27]D. W. Hwang, H. G. Kim, J. S. Jang, S. W. Bae, S. M. Ji, J. S. Lee, “Photocatalytic decomposition of water–methanol solution over metal-doped layered perovskites under visible light irradiation”, Catalysis Today, 93–95(2004)845–850.
[28]T. Takata, A. Tanaka, M. Hara, J. N. Kondo, K.i Domen, “Recent progress of photocatalysts for overall water splitting”, Catalysis Today, 44(1998)17-26.
[29]T. Ohno, F. Tanigawa, K. Fujihara, S. Izumi, M. Matsumura, “Photocatalytic oxidation of water on TiO2-coated WO3 Particles by Visible light using Iron(III) ions as electron acceptor”, Journal of Photochemistry and Photobiology A: Chemistry, 118(1998)41-44.
[30]Z. Jin, X. Zhang, Y. Li, S. Li, G. Lu, “5.1% Apparent quantum efficiency for stable hydrogen generation over eosin-sensitized CuO/TiO2 photocatalyst under visible light irradiation”, Catalysis Communications 8, (2007)1267–1273.
[31]J. S. Jang, W. Li , S. H. Oh , J. S. Lee . “Fabrication of CdS/TiO2 nano-bulk composite photocatalysts for hydrogen production from aqueous H2S solution under visible light ”, Chemical Physics Letters, 425(2006)278–282.
[32]J. S. Jang, H. G. Kim, P. H. Borse, J. S. Lee.“Simultaneous hydrogen production and decomposition ofH2S dissolved in alkaline water over CdS-TiO2 composite photocatalysts under visible light irradiation”, International Journal of Hydrogen Energy, 32(2007)4786-4791.
[33]J. S. Jang, S. M. Ji, S. W. Bae, H. C. Son, J. S. Lee. “Optimization of CdS/TiO2 nano-bulk composite photocatalysts for hydrogen production from Na2S/Na2SO3 aqueous electrolyte solution under visible light (λ≥420 nm)”, Journal of Photochemistry and Photobiology A: Chemistry,188 (2007)112–119.
[34]N. Dubey, S. S. Rayalu, N. K. Labhsetwar, R. R. Naidu, R. V. Chatti, S. “Devotta, Photocatalytic properties of zeolite- based materials for the photoreduction of methyl orange”, Applied Catalysis A: General, 303(2006)152–157.
[35]N. Dubey, N. K. Labhsetwar, S. Devotta, S. S. Rayalu , “Hydrogen evolution by water splitting using novel composite zeolite-based photocatalyst”, Catalysis Today, 129(2007)428–434.
[36]L.H. Kao, T.C. Hsu , H.Y. Lu, “Sol–gel synthesis and morphological control of nanocrystalline TiO2 via urea treatment”, Journal of Colloid and Interface Science, 316(2007)160–167.
[37]P. Cheng,C. Deng, M. Gu, X. Dai, “Effect of urea on the photoactivity of titania powder prepared by sol–gel method”, Materials Chemistry and Physics, 107(2008)77–81.
[38]Y. Liu , L. Guo, W. Yan, H. Liu, “A composite visible-light photocatalyst for hydrogen production”, Journal of Power Sources, 159(2006)1300–1304.
[39]H. Yang , L. Guo, W. Yan , H. Liu, “A novel composite photocatalyst for water splitting hydrogen production”, Journal of Power Sources, 159(2006)1305–1309.
[40]黃繹倫,”兩微乳膠技術製備奈米Pt/TiO2-XNX微粉應用於甲醇/水裂解產氫之研究”,(2007)。
[41]T. Sreethawong , S. Laehsalee , S. Chavadej, “Use of Pt/N-doped mesoporous-assembled nanocrystalline TiO2 for photocatalytic H2 production under visible light irradiation”, Catalysis Communications, 10(2009)538–543.
[42]S. Tawkaew, S. Yin, T. Sato, “Photoreduction of nitrate ion and photoevolution of hydrogen on unsupported TiO2 and TiO2 pillared H4Nb6O17 nanocomposites”, International Journal of Inorganic Materials, 3(2001)855–859.
[43]J.J. Zou, C.J. Liu, K.L. Yu, D.G. Cheng, Y.P. Zhang, F. He, H.Y. Du, L. Cui, “Highly efficient Pt/TiO2 photo-catalyst prepared by plasma-enhanced impregnation method”, Chemical Physics Letters, 400(2004)520–523.
[44]Hsin-Yu Lin, Yueh-Fang Chen, Yu-Wen Chen, “Water splitting reaction on NiO/InVO4 under visible light irradiation”, International Journal of Hydrogen Energy, 2007, 32, 86 – 92
[45]Brundabana Naik, Satyabadi Martha, K.M. Parida,” Facile fabrication of Bi2O3/TiO2-xNx nanocomposites for excellent visible light driven photocatalytic hydrogen evolution”, International journal of hydrogen energy ,36(2011)2794-2802
[46]Tarawipa Puangpetch, Thammanoon Sreethawong, “Hydrogen production over metal-loaded mesoporous-assembled SrTiO3 nanocrystal photocatalysts: Effects of metal type and loading”, International journal of hydrogen energy ,35(2010)6531-6540
[47]Dengwei Jing, Maochang Liu, Qinyun Chen, Liejin Guo, “Efficient photocatalytic hydrogen production under visible light over a novel W-based ternary chalcogenide photocatalyst prepared by a hydrothermal process”, International journal of hydrogen energy ,35(2010)8521-8527
[48]Olivier Rosseler, Nicolas Keller, “Solar light photocatalytic hydrogen production from water over Pt and Au/TiO2(anatase/rutile) photocatalysts: Influence of noble metal and porogen promotion”, Journal of Catalysis 269 (2010) 179–190
[49]R. Dholam, N. Patel, A. Miotello, “Efficient H2 production by water-splitting using indiumetin-oxide/V-doped TiO2 multilayer thin film photocatalyst”, International journal of hydrogen energy ,36(2011)6519-6528
[50]Akihiko Kudo, “Development of photocatalyst materials forwater splitting”, International Journal of Hydrogen Energy, 2006,31, 197–202
[51]Swanson, Tatge., Private Communication, (1950)
[52]Swanson, Tatge., Private Communication, (1950)
[53]Brown et al., University of Western Ontario, London, Ontario, Canada., Private Communication, (1975)
[54]Calculated from NIST using POWD-12++
[55]Hanawalt. et al., Anal. Chem., 10, 475, (1938)
[56]Calculated from ICSD using POWD-12++, (1997)
[57]Becker, K., Ebert, F., Z. Phys., 31, 269, (1925)
[58]J.H. Jang, S.C. Lee, D.J. Kim, M. Kang, S.J. Choung, “Characterization of Pt-impregnated MCM-41 and MCM-48 and their catalytic performances in selective catalytic reduction for NOx”, Applied Catalysis A: General, 286(2005)36–43.
[59]Marina V. Bukhtiyarova, Aleksandra S. Ivanova, “Selective catalytic reduction of nitrogen oxide by ammonia on substituted strontium ferrites”, Applied Catalysis A: General 384 (2010) 230–240
[60]Yan Wang, Caixia Feng, Jianjun Yang, “Enhanced visible light photocatalytic activity of N-doped TiO2 in relation to single-electron-trapped oxygen vacancy and doped-nitrogen”, Applied Catalysis B: Environmental 100 (2010) 84–90
[61]Marisol Vieites, Dinorah Gambino, “Platinum(II) metal complexes as potential anti-Trypanosoma cruzi agents”, Journal of Inorganic Biochemistry 102 (2008) 1033–1043
[62]Natacha Veerapen, Stephanie. A. Taylor, Charles. J. Walsby, and B. Mario Pinto, “A Mild Pummerer-Like Reaction of Carbohydrate-Based Selenoethers and Thioethers Involving Linear Ozonide Acetates as Putative Intermediates”, J. AM. CHEM. SOC. 2006, 128, 227-239
[63]M. Anpo, S. Kishiguchi, M. Takeuchi, H. Yamashita, K. Ikeue, B. Morin, A. Davidson and M. Che, Research on Chemical Intermediates, vol.27, 459-467(2001)
[64]S. Klosek and D. Raftery, J. Phys. Chem. B, vol.105, 2815-2819(2001)


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 曾月霞、林岱樺、陳秀萍(2003).跨理論模式於改變老人運動行為之應用.護理雜誌,50(4),76-80。
2. 黃錫美(2006).潘德式健康促進模式之介紹.北市醫學雜誌,3(9),
3. 郭淑娟、陳重榮、梁深維、楊素伴、許美月、祝春紅(2005).門診糖尿病病患個案管理照護之成效.北市醫學雜誌,2(2),37-46。
4. 紀依盡、林旭龍(2008).應用跨理論模式探討健走對高體脂女大學生運動行為及肥胖變化之研究.學校衛生,53,17-33。
5. 黃艾君、江界山(2006).運動與高血脂症.大專體育,87,191-197。
6. 吳一德(2006).有氧運動與營養教育介入對高總膽固醇學生血脂質、健康體適能及運動行為之影響.大專體育學刊,8(3),161-172。
7. 張曉卉(2002).哪些城市變瘦了.康健雜誌,46,142-144。
8. 甘能斌、劉介仲、葉清華、莊瑞平、曾明郎(2004).十二週健走訓練對大專超重女學生身體組成及血脂濃度的影響.輔仁大學體育學刊,3,31-41。
9. 毛祚彥、林貴福(2007).身體活動量、體適能水準與代謝症候群的關係.中華體育季刊,21(2),33-41。
10. 王瑞霞、陳彰惠(2003).由文獻回顧檢視潘德健康促進模式.護理雜誌,
11. 王助順、張曙笙(2008).健走計劃介入對健康體能、血脂質及健康促進生活型態之影響.學校衛生,53,93-101。
12. 賴秀昀、黃國晉、陳慶餘(2006).老年人與代謝症候群.基層醫學,21(9),239-243。
13. 曾寶秀、成佳憲、賴明坤(2007).團體衛教癌症營養知識對於病患與家屬之成效探討.放射治療與腫瘤學,14(1):37-46。
 
系統版面圖檔 系統版面圖檔