(3.238.130.97) 您好!臺灣時間:2021/05/10 13:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:黃淳蔚
研究生(外文):Chun-wei Huang
論文名稱:綠竹筍殼幾丁質酶異構酶之純化與性質研究
論文名稱(外文):Studies on the purification and properties of chitinase isoforms from the sheaths of bamboo (Bambusa oldhamii) shoots.
指導教授:張珍田張珍田引用關係
指導教授(外文):Chen-Tien Chang
學位類別:碩士
校院名稱:靜宜大學
系所名稱:食品營養研究所
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2010
畢業學年度:99
語文別:中文
論文頁數:199
中文關鍵詞:綠竹筍性質幾丁質酶異構酶純化
外文關鍵詞:Bamboo (Bambusa aldhamii) shootschitinase isoformspurificationproperties.
相關次數:
  • 被引用被引用:3
  • 點閱點閱:411
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:101
  • 收藏至我的研究室書目清單書目收藏:0
綠竹筍(Bambusa oldhamii)殼所含幾丁質酶經由硫酸銨 (80%飽和度) 劃分、DEAE-Sephacel離子交換層析、Polybuffer exchanger PBE-94等電焦集層析及HiLoad Superdex 75 HR膠體過濾層析等步驟純化可得G1-A、G2及G3三種幾丁質酶異構酶,其中G1-A可水解幾丁質及人工合成基質4-methylumbelliferyl N,N’,N’’-triacetyl-β-chitotrioside (4-MU-β-GlcNAc3),異構酶G2可水解人工合成基質4-MU-β-GlcNAc3但幾乎無法水解幾丁質,而異構酶G3可水解幾丁質但幾乎無法水解人工合成基質4-MU-β-GlcNAc3,SDS-PAGE電泳分析顯示三種異構酶均未達均質純度。以Hiprep Sephacryl S-100 HR 膠體過濾層析測得異構酶G1-A尚含有兩種異構酶,其分子量為22 kDa和18 kDa,異構酶G2之分子量為24 kDa,而異構酶G3之分子量則為22 kDa;以SDS-PAGE電泳及幾丁質酶活性染色測得異構酶G1-A之分子量為18 kDa,異構酶G3之分子量為25 kDa,而異構酶G2無法水解幾丁質 (EG-chitin) 未顯示活性帶,此結果顯示異構酶G1-A及G3均屬單元體酵素。SDS-PAGE電泳及幾丁聚醣酶活性染色結果顯示,三種幾丁質酶異構酶另含有一至數種幾丁聚醣酶異構酶;等電焦集電泳分析顯示異構酶G1-A及 G2含有若干不同等電點之蛋白質,而異構酶G3則主要含有等電點3.69左右之蛋白質;異構酶G3於60℃保溫120分鐘幾無活性損失,熱穩定性頗佳,其水解EG-chitin基質最適pH值為4,最適溫度為70℃,Km 為0.87 mg/mL,Vmax為10.24 μmolGlcNAc min-1mg-1,而活化能為13.1 kcal/mole;其水解CM-chitin基質最適pH值為3及9,最適溫度為70℃,Km 為1.65 mg/mL,Vmax為24.75 μmolGlcNAc min-1mg-1,而活化能為12.5 kcal/mole。基質專一性分析顯示G3異構酶可水解水溶性幾丁質、不溶性幾丁質及幾丁聚醣,其水解幾丁聚醣活性以對50 ~ 80 % 去乙醯度幾丁聚醣具有較高活性,而具水解幾丁聚醣酶活性之原因可能是含有幾丁聚醣酶異構酶所致。
Three chitinase isoforms, G1-A, G2 and G3, were purified from the sheaths of bamboo shoots by sequential steps of ammonium sulfate (0 ~ 80% saturation) fractionation, DEAE-Sphacel ion-exchange chromatography, Polybuffer exchanger PBE-94 chromatofocusing and HiLoad Superdex 75 HR gel filtration. The isoform G1-A was active toward both chitin polymer substrates and synthetic substrate 4-MU-β-GlcNAc3. However, the isoform G2 was active toward synthetic substrate 4-MU-β-GlcNAc3, but almost inactive toward chitin polymer substrates;on the contrary, the isoform G3 was active toward chitin polymer substrates, but almost inactive toward synthetic substrate 4-MU-β-GlcNAc3. The three isoforms were not homogeneous, as analyzed by SDS-PAGE. Isoform G1-A consisted of two isoforms with molecular masses of 22 and 18 kDa, whereas isoform G2 and G3 consisted of one isoforms with molecular masses of 24 and 22 kDa, respectively, as analyzed by gel filtration on Hiprep Sephacry S-100 HR. The molecular masses of isoforms G1-A and G3 were 18 kDa and 22 kDa, respectively, as analyzed by SDS-PAGE and chitinase activity staining using EG-chitin as a substrate. However, the isoform G2 was inactive toward EG-chitin substrate, and showed no activity band in gel activity staining using EG-chitin as a substrate. These results indicated that the isoforms G1-A and G3 were monomer. All the three isoforms also contained one to several isoforms of chitosanase, as analyzed by SDS-PAGE and chitosanase activity staining. The isoforms G1-A and G3 contained several proteins with different isoelectric points, while the isoform G3 contained a major protein with isoelectric point at 3.69, as analyzed by isoelectric focusing electrophoresis. The isoform G3 was thermally stable, as it retained almost all of its activity after incubation at 60 ℃ for 120 min. The optimum pH for EG-chitin hydrolysis of the isoform G3 was 4, the optimum temperature was 70 ℃, the Km was 0.87 mg/mL, the Vmax was10.24 μmolGlcNAc min-1mg-1and the activation energy was 13.1 kcal/mol. The optimum pH for CM-chitin hydrolysis of the isoform G3 was 3 and 9, the optimum temperature was 70 ℃, the Km was 1.65 mg/mL, the Vmax was 24.75 μmolGlcNAc min-1mg-1and the activation energy was 12.5 kcal/mol. Substrate specificity analysis indicated that the isoform G3 hydrolyzed both chitin and chitosan polymer substrates. For hydrolysis of chitosan polymers exhibiting various deacetylation, most effectively hydrolyzing of chitosan polymers that were 50~80% deacetylation. This may be due to contamination with chitosanase isoforms in the purified chitinase.
目錄 ------------------------------------------------------------------------------------ Ⅰ
表目錄 --------------------------------------------------------------------------------- Ⅵ
圖目錄 --------------------------------------------------------------------------------ⅤⅡ
縮寫表 -------------------------------------------------------------------------------- XⅡ
中文摘要-------------------------------------------------------------------------------XⅤ
英文摘要 -------------------------------------------------------------------------- XⅤⅡ
第一章 前言
第一節 研究背景--------------------------------------------------------------------- 1
第二節 研究目的--------------------------------------------------------------------- 2
第二章 文獻回顧
第一節 幾丁質之水解酵素-------------------------------------------------------- 3
第三章 材料與方法
第一節 實驗材料
壹、綠竹筍------------------------------------------------------------------------ 41
貳、化學藥品--------------------------------------------------------------------- 44
參、重要儀器及器材------------------------------------------------------------ 45
第二節 實驗方法
壹、幾丁質酶活性測定
一、還原糖增量法------------------------------------------------------------- 46
貳、幾丁聚醣酶活性測定
一、還原糖增量法------------------------------------------------------------- 46
参、幾丁三糖酶活性測定------------------------------------------------------- 48
肆、β-NAHA活性測定---------------------------------------------------------- 49
伍、醣苷水解酵素活性測定---------------------------------------------------- 49
陸、蛋白酶活性測定
一、酪胺酸校正曲線製作---------------------------------------------------- 50
一、酵素活性測定------------------------------------------------------------- 50
柒、過氧化酶活性測定---------------------------------------------------------- 51
捌、蛋白質定量
一、BCA呈色法------------------------------------------------------------------ 52
玖、乙二醇幾丁質(EG-chitin), 羧甲基幾丁質(CM-chitin)及膠態幾丁質 (colloidal chitin) 之製備
一、EG-chitin製備------------------------------------------------------------ 53
二、CM-chitin製備----------------------------------------------------------- 55
三、colloidal chitin製備------------------------------------------------------ 56
拾、胺基乙醯幾丁聚醣( AE-Chitosan)之製備------------------------------ 57
拾壹、不同去乙醯度幾丁聚醣之製備--------------------------------------- 58
拾貳、幾丁聚醣去乙醯度之測定--------------------------------------------- 61
拾参、綠竹筍外殼幾丁質酶異構酶之純化
一、異構酶純化流程圖--------------------------------------------------- 62
二、實驗流程--------------------------------------------------------------- 63
拾肆、綠竹筍外殼幾丁質酶異構酶之性質測定
一、原態分子量測定------------------------------------------------------ 69
二、SDS-PAGE及酵素活性染色---------------------------------------- 70
三、等電點(pI)---------------------------------------------------------- 71
四、pH值對酵素活性之影響-------------------------------------------- 72
五、溫度對酵素活性之影響--------------------------------------------- 73
六、基質專一性------------------------------------------------------------ 74
七、反應動力學參數Km值及最大反應速率Vmax值 --------------- 75
八、活化能測定------------------------------------------------------------- 75
九、金屬離子及鹽類對酵素活性之影響------------------------------ 76
十、化學修飾劑對酵素活性之影響------------------------------------ 76
十一、不同去乙醯度幾丁聚醣對幾丁質酶活性之影響------------ 78
第四章 結果與討論
第一節 綠竹筍殼所含之酵素活性---------------------------------------------- 79
第二節 幾丁質酶異構酶純化
壹、 硫酸銨劃分----------------------------------------------------------------- 81
貳、管柱層析純化--------------------------------------------------------------- 84
第三節 幾丁質酶異構酶性質
壹、分子量
一、膠體過濾層析------------------------------------------------------------ 101
二、SDS-PAGE及酵素活性染色------------------------------------------ 105
貳、等電點(isoelectric point,pI)-------------------------------------------- 111
参、最適pH及pH穩定性---------------------------------------------------- 114
肆、最適溫度及熱穩定性----------------------------------------------------- 119
伍、基質專一性----------------------------------------------------------------- 123
陸、活性影響物質
一、金屬離子及螯合劑EDTA ----------------------------------------------- 124
二、化學修飾劑-------------------------------------------------------------- 125
柒、不同去乙醯度幾丁聚醣對幾丁聚醣酶活性之影響---------------- 127
捌、動力學參數及反應活化能---------------------------------------------- 129
第五章 結論------------------------------------------------------------------------ 142
第六章 未來展望------------------------------------------------------------------ 143
第七章 參考文獻------------------------------------------------------------------ 144


附錄
附錄一 幾丁質酶及幾丁聚醣酶活性測定方法 --------------------------- 161
附錄二 幾丁三糖酶活性測定(螢光法) ------------------------------------- 165
附錄三 β-NAHA及醣苷水解酵素活性測定 ------------------------------ 169
附錄四 蛋白酶活性測定 ------------------------------------------------------ 171
附錄五 BCA呈色法蛋白質校正曲線 -------------------------------------- 173
附錄 八 SDS-PAGE電泳及幾丁質酶和幾丁聚醣酶活性染色 -------- 174
附錄 七 VisPRO 蛋白質染色 ------------------------------------------------ 180
附錄 十 GE公司Gel filtration calibration kits 說明圖 ------------------ 181
附錄 十二 PhastSystem等電焦集電泳 ---------------------------------------- 182
附錄 十三 愛玉子雌隱花果之乳汁及果皮所含酵素活性 ----------------- 184








表目錄
表一 植物幾丁質酶之特性-------------------------------------------------------------- 8
表二 植物幾丁質酶之分類及其基因------------------------------------------------- 18
表三 植物幾丁質酶之動力學參數---------------------------------------------------- 22
表四 植物幾丁質酶之性質比較------------------------------------------------------- 23
表五 幾丁質酶水解產物還原端之變旋異構物組態------------------------------- 34
表六 各種化學修飾劑之溶劑及反應緩衝液---------------------------------------- 77
表七 綠竹筍外殼所含之幾丁質聚合物水解酵素、過氧化酶、蛋白酶
及醣苷水解酵素活性 ----------------------------------------------------------- 80
表八 綠竹筍殼之幾丁質酶異構酶 (以EG-chitin為基質) 純化結果 -------- 97
表九 綠竹筍殼之幾丁質酶異構酶 (以CM-chitin為基質) 純化結果 ------- 98
表十 綠竹筍殼幾丁三醣酶異構酶之純化結果------------------------------------- 99
表十一 綠竹筍殼幾丁質酶異構酶G1-A、G2和 G3之總活性及比活性比較--100
表十二 綠竹筍殼幾丁質酶異構酶G1-A、G2和 G3之分子量 (SDS-PAGE)
比較--------------------------------------------------------------------------------- 107
表十三 綠竹筍殼幾丁質酶異構酶G3之基質專一性------------------------------- 123
表十四 各種金屬離子及螯合劑EDTA對綠竹筍殼幾丁質酶異構酶G3活性
之影響 ---------------------------------------------------------------------------- 124
表十五 各種化學修飾劑對綠竹筍殼幾丁質酶異構酶G3活性之影響 -------- 126
表十六 不同溫度之綠竹筍外殼幾丁質酶異構酶G3水解CM-chitin及EG-chitin之最大反應速率 ---------------------------------------------------------------- 140

圖目錄
圖 一 參與幾丁質代謝之幾丁質相關酵素 ---------------------------------------- 5
圖 二 缺乏富含半胱胺酸幾丁質結合區及樞紐區之小麥第七類型幾丁質酶與其他類型植物幾丁質酶及其蛋白質功能區比較時之圖解示意圖--11
圖 三 小麥第七類型幾丁質酶之預測結構圖 ----------------------------------- 13
圖 四 Hevamine之立體結構 ------------------------------------------------------- 14
圖 五 Serratia marcescens 幾丁質酶之立體結構圖 --------------------------- 16
圖 六 大麥種子幾丁質酶之立體結構圖 ----------------------------------------- 17
圖 七 PR-3和PR-4幾丁質酶之演化模式 -------------------------------------- 20
圖 八 腐皮鐮胞子菌(Fusarium solani) 和豌豆 間交互作用之基
因作用模式假說圖 ----------------------------------------------------------- 24
圖 九 幾丁質水解酵素之作用機制 ----------------------------------------------- 27
圖 十 醣類水解酵素之水解機制 -------------------------------------------------- 28
圖 十一 大麥幾丁質酶結合幾丁質基質假說圖 ----------------------------------- 29
圖 十二 大麥幾丁質酶活性中心結合4-MU-GlcNAc3 基質之圖解說明 ---- 30
圖 十三 人類幾丁三糖酶結構與其他幾丁質酶結構之比較人類幾丁三糖酶立體結構圖 ----------------------------------------------------------------------- 33
圖 十四 山藥幾丁質酶對受到真菌感染草莓的影響 ----------------------------- 39
圖 十五 綠竹筍植株外觀 -------------------------------------------------------------- 42
圖 十六 未出土綠竹筍: (A) 外觀;(B) 外殼;(C) 可食部 -------------------- 42
圖 十七 綠竹筍外殼之冷凍乾燥: (A) 液態氮凍結;(B) 冷凍乾燥 ---------- 43
圖 十八 冷凍乾燥綠竹筍外殼之粉末化: (A) 粉末化前;(B) 粉末化後 ---- 43
圖 十九 綠竹筍外殼幾丁聚合物水解酵素之硫酸銨劃分:
(A)幾丁質酶;(B)幾丁三糖酶;(C)幾丁聚醣酶 ------------- 82
圖 二十 綠竹筍殼幾丁聚合物水解酵素之DEAE-Sephacel離子交換層析---86
圖 二十一 綠竹筍殼幾丁質酶異構酶D1之Superdex 75 prep grade膠體過濾層析 ----------------------------------------------------------------------------------- 88
圖 二十二 綠竹筍殼幾丁質酶異構酶D2之Superdex 75 prep grade膠體過濾層析 ----------------------------------------------------------------------------------- 90
圖 二十三 綠竹筍殼幾丁質酶異構酶D3之Polybuffer exchanger PBE-94等電焦集層析 --------------------------------------------------------------------------- 92
圖 二十四 綠竹筍殼幾丁質酶異構酶P3之之Superdex 75 prep grade膠體過濾層析 -------------------------------------------------------------------------------- 94
圖 二十五 低分子量套組標準蛋白質之Hiprep16/60 Sephacryl S-100 HR管柱膠體過層析分離 (A) 及校正曲線 (B) ------------------------------------- 102
圖 二十六 綠竹筍殼幾丁質酶異構酶之Hiprep 16/60 Sephacryl S-100 HR管柱膠體過濾層析分子量測定-------------------------------------------------- 103
圖 二十七 SDS-PAGE低分子量套組標準蛋白質之SDS-PAGE電泳分離及校正取線 ------------------------------------------------------------------------------- 108
圖 二十八 綠竹筍殼幾丁質酶異構酶之SDS-PAGE電泳及酵素活性染色----- 109
圖 二十九 pI值套組(3~10)標準蛋白質之PhastGel IEF 3~9等電焦集電泳及校正曲線 ---------------------------------------------------------------------------- 112
圖 三十 綠竹筍殼幾丁質酶異構酶G1-A, G2 and G3之 PhastGel IEF 3~9等電焦集電泳 ---------------------------------------------------------------------- 113
圖 三十一 pH對幾丁質酶異構酶G3水解CM-chitin (A) 及EG-chitin (B)活性之影響 ---------------------------------------------------------------------------- 116
圖 三十二 pH對綠竹筍殼幾丁質酶異構酶G1-A 及G2活性影響 ------------ 117
圖 三十三 pH對綠竹筍殼幾丁質酶異構酶G3穩定性之影響 ------------------ 118
圖 三十四 溫度對幾丁質酶異構酶G3水解CM-chitin (A) 及EG-chitin (B)
活性之影響 ----------------------------------------------------------------- 120
圖 三十五 溫度對綠竹筍殼幾丁質酶異構酶G1-A 及G2活性之影響 ------ 121
圖 三十六 綠竹筍殼幾丁質酶異構酶G3之熱穩定性 --------------------------- 122
圖 三十七 幾丁聚醣去乙醯度對綠竹筍外殼異構酶G3水解幾丁聚醣活性
之影響 ----------------------------------------------------------------------- 128
圖 三十八 綠竹筍幾丁質酶異構酶G3於50 ℃下水解各種不同濃度
CM-chitin (A) 及EG-chitin (B) 之動力學 --------------------------- 130
圖 三十九 綠竹筍幾丁質酶異構酶G3於55 ℃下水解各種不同濃度
CM-chitin (A) 及EG-chitin (B) 之動力學 --------------------------- 131
圖 四十 綠竹筍幾丁質酶異構酶G3於60 ℃下水解各種不同濃度
CM -chitin (A) 及EG-chitin (B) 之動力學 -------------------------- 132
圖 四十一 綠竹筍幾丁質酶異構酶G3於65 ℃下水解各種不同濃度
CM-chitin (A) 及EG -chitin (B) 之動力學 -------------------------- 133
圖 四十二 綠竹筍幾丁質酶異構酶G3於70 ℃下水解各種不同濃度
CM-chitin (A) 及EG -chitin (B) 之動力學 -------------------------- 134
圖 四十三 於50 ℃下CM-chitin (A) 及EG-chitin (B) 濃度對綠竹筍殼
異構酶G3活性之影響 -------------------------------------------------- 135
圖 四十四 於55 ℃下CM-chitin (A) 及EG-chitin (B) 濃度對綠竹筍殼
異構酶G3活性之影響 -------------------------------------------------- 136
圖 四十五 於60 ℃下CM-chitin (A) 及EG-chitin (B) 濃度對綠竹筍殼
異構酶G3活性之影響 -------------------------------------------------- 137
圖 四十六 於65 ℃下CM-chitin (A) 及EG-chitin (B) 濃度對綠竹筍殼
異構酶G3活性之影響 -------------------------------------------------- 138
圖 四十七 於70 ℃下CM-chitin (A) 及EG-chitin (B) 濃度對綠竹筍殼
異構酶G3-活性之影響 -------------------------------------------------- 139
圖 四十八 以Arrhenius作圖法測定綠竹筍殼幾丁質酶異構酶G3催化水解 CM-chitin (A) 及 EG-chitin (B) 之活化能--------------------------- 141

縮寫表
縮寫 縮寫全名
AE-chitosan aminoethyl chitosan
BCA bicinchoninic acid
CM-chitin carboxymethyl chitin
CBD chitin-binding domain
CBR coomassie brilliant blue R-250
CHD 1,2-cyclohexanedione
CM-chitin carboxymethyl chitin
CRD cysteine-rich domain
CTE C-terminal extension
DD degree of deacetylation
DEPC diethyl pyrocarbonate
DMAB p-dimethylaminobenzaldehyde
DMSO dimethylsulfoxide
DNFB 2,4-dinitro-1-fluorobenzene
EAM ethylacetimidate
EDTA ethylenediamine tetraacetic acid
EG-chitin ethylene glycol chitin
GlcN D-glucosamine
GlcN2 chitobiose
GlcN3 chitotriose
GlcN4 chitotetraose
GlcN5 chitopentaose
GlcN6 chitohexaose
GlcNn chitooligosaccharides
GlcNAc N-acetyl-D-glucosamine
GlcNAc2 N,N’ -diacetylchitotriose
GlcNAc3 N,N’,N’’-triacetylchitotriose
GlcNAc4 N,N’,N’’,N’’’-tetraacetylchitotetraose
GlcNAc5 N,N’,N’’,N’’’,N’’’’-pentaacetylchitopentaose
GlcNAc6 N,N’,N’’,N’’’,N’’’’,N’’’’’-hexaacetylchitohexaose
GlcNAcn N-acetylchitooligosaccharides
HR hinge region
IEF isoelectric focusing electrophoresis
MBTH 3-methyl-2-benzothiazolinone hydrochloride
mU mini Unit
4-MU 4-methylumbelliferone
4-MU-β-GlcNAc3 4-methylumbelliferyl N,N’,N’’-triacetyl-β-chitotrioside
NAI N-acetylimidazole
NBS N-bromosuccinimide
β-NAGA β-N-acetylglucosaminidase
β-NAHA β-N-acetylhexosaminidase
pNP-α-Gal p- nitrophenyl-α-D-galactopyranoside
pNP-β-Gal p- nitrophenyl-β-D- galactopyranoside
pNP-α-Glc p- nitrophenyl-α-D- glucopyranoside
pNP-β-Glc p- nitrophenyl-β-D- glucopyranoside
pNP-β-Fuc p- nitrophenyl-β-L-fucopyranoside
pNP-β-Xyl p- nitrophenyl-β-D-xylopyranoside
pHMB p-hydroxymercuribenzoate
PMSF phenylmethanesulfonyl fluoride
PR protein pathogenesis-related protein
PVPP polyvinyl pyrrolidone polymer
SCP signal cell protein
SDS sodium dodecyl sulfate
SDS-PAGE SDS-polyacrylamide gel electrophoresis
SP signal peptide
WRK N-ethyl-5-phenylisoazoline-3-sulfonate (Woodward’s reagent K)
第七章 參考文獻
王欣怡 (2009) 番木瓜 (Carica papaya Tainung No.2) 種子幾丁質酶之純化與性質研究。靜宜大學食品營養學系碩士論文,台中,台灣。
王綺芬 (1989) 蟹殼幾丁質產品理化性質測定及製備方法之研究。國立台灣大學食品科學研究所碩士論文,台北,台灣。
李宗明(2003)綠竹筍可食部幾丁質酶之純化與生化性質研究。國立台灣大學農業化學研究所碩士論文,台北市
吳雅瑛 (2007) 綠竹筍殼幾丁三糖酶之純化與性質研究。靜宜大學食品營養學系碩士論文,台中,台灣。
吳珮甄 (2006) 木瓜乳汁幾丁質酶之純化與性質研究。靜宜大學食品營養學系碩士論文,台中,台灣。
林宜蓁(2004)綠竹筍殼幾丁質酶之純化與生化性質研究。國立台灣大學微生物與生化學研究所碩士論文。
張粲如(1990)綠竹筍採收後生理與保鮮技術。作物之遺傳育種及生理栽培研討會專集。pp.123-140
葉貞妤(2003)綠竹筍(Bambusa oldhamii)外殼幾丁聚醣酶之純化及性質研究。靜宜大學食品營養研究所碩士論文,台中縣。
郭朝禎(2009)綠竹筍懸浮細胞幾丁質降解酵素之探討。國立台灣大學微生物與生化學研究所博士論文。台北市,台灣。
駱秋萍(2000)蕪菁根部幾丁質酶之誘發及性質研究。靜宜大學食品營養研究所碩士論文,台中縣。
蔡培芳(2003)綠竹筍cDNA之選殖與檢定。國立台灣大學農業化學研究所碩士論文,台北市。
Abdel-Naby, M. A., El-Shayeb, N. M. A. and Sherief, A. A. (1992) Purification and some properties of chitinse from Aspergillus carneus. Applied Biochem. Biotech. 37: 141-154.
Alexander, N. M. (1974) Oxidative cleavage of tryptophanyl peptide bonds during chemical and peroxidase – catalyzed iodinations. J. Biol.Chem. 249: 1946-1952.
Andersen, M. D., Jensen, A., Robertus, J. D., Leah, R. and Shrivers, K. (1997) Heterologous expression and characterization of wild-type and mutant forms of a 26 kDa endochitinase from barley (Hordeum vulgare L.) Biochem. J. 322: 815-822.
Andrews, P. (1965) The gel-filtration behavior of proteins related to their molecular weights over a wide range. Biochem. J. 96: 596-606.
Anke, C., Kalk, K. H., Beintema, J. J. and Dijkstra, B. W. (1994) Crystal structures of hevamine, a plant defence protein with chitinase and lysozyme activity, and its complex with an inhibitor. Structure. 2: 1181-1189.
Armand, S., Tomita, H., Heyraud, A., Gey, C., Watanabe, T. and Henrissat, B. (1994) Stereochemical course of the hydrolysis reaction catalyzed by chitinase A1 and D from Bacillus circulars WL -12. FEBS Lett. 343: 177-180.
Anson, M.L. (1939) The estimation of pepsin, trypsin, papain and cathepsin with hemoglobin. J. Gen. Physiol. 22:79-89.
Bahl, O.P. and Agrawal, K. M.L. (1968) Glycosidases of Phaseolus Vulgaris.I.Isolation and characterization of β-N-acetylglucosaminidase. J. Biol. Chem. 243: 98-102.
Berglund, L., Brunstedt, J., Nielsen, K. K., Chen, Z. C., Mikkelsen, J.D. and Marcker, K. A. A. (1995) A proline-rich chitianse from Beta vulgaris. Plant Mol. Biol. 27: 211-216.
Bernier, I., Vanlefmputten, E., Horisberger, M. and Jolles, P. (1971) The turnip lysozyme. FEBS Lett. 14: 100-104.
Bol, J. F., Linthorst, H. J. M. and Cornelissen, B. J. C. (1990) Plant pathogenesis related proteins induced by virus infection. Annu. Rev. Phytopathol. 28: 113–138.
Boller, T. and Mauch, F. (1988) Colorimetric assay for chitinase. In Method in Enzymology Vol.161B (Wood, W.A. and Kelogy, S.T. Eds), pp. 430-435,Academic Press, New York.
Boller, T., Gehri, A., Mauch, F. and Vogeli, U. (1983) Chitinase in bean leaves:Induction by ethylene, purification, properties, and possible function. Planta 157: 22-31.
Bowles, D. (1990) Defense-related proteins in higher plants, Annu. Rev. Biochem. 59: 873–907.
Boyer, P. D. (1954) Spectrophotometric study of the reaction of the proteins sulfhydryl groups with organic mercurials. J. Am. Chem. Soc. 76: 4331-4337.
Brurberg, M. B., Eijsink, V. G. H. and Nes, J. F. (1994) characterization of a chitinase gene (chiA) from Serratia maeescens BJL 200 and one-step purification of the gene product. FEMS Microbiol. Lett. 124:399-404.
Carroad, P. A. and Raymond, A. T. (1978) Bioconversion shellfish chitin wastes: process conception and selection of microorganisms. J. Food Sci. 43: 1158.
Chang, C. T., Lo, H. F., Wu, C. T. and Sung, H. Y. (1992) Purification and properties of chitinase from cabbage. Biochem. Intl. 28: 707-715.
Chang, C. T., Hsueh, Y. L. and Sung, H.Y. (1996) Purification and properties of chitinase from cabbage stems with root.Biochem. Int. Mol. Biol. 40:417-425.
Chipman, D. M. and Sharon, N. (1969) Mechanism of lysozyme action.
Science. 165: 454-460.
Clark, J., Quayle, K. A., MacDonald, N. L. and stark, J. R. (1988) Metabolism in marine flatfish:V. Chitinolytic activities in Dover sole, Solea solea (L.) Comp. Biochem. Physiol. 90: 379-384.
Collinge, D. B. and Kragh, K. M. (1993) Plant chitinase. Plant J. 3: 31-40.
Cosio, I. G., Fisher, R. K. and Canoad, P. A. (1982) Bioconversion shellfish chitin wastes: waste pretreatment, enzyme production, process design and economic analysis. J. Food Sci. 47: 901-905.
Coughlan, S. and Hind, G. (1987) Phosphorylation of thylakoid proteins by a purified kinase. J. Biol. Chem. 262: 8408.
Dahlquist, F. W., BordersJr, C. L., Jacobson, G. and Raftery, M. A. (1969) The specifity of human, hen and papaya lysozymes. Biochemistry. 8: 694-700.
Dumas-Gaudot, E., Grenier, J., Furlan, V. and Asselin, A. (1992) Chitinase, chitosanase and -1, 3 glucanase activities in Allium and Pisam roots colonized by Glomus species. Plant Sci. 84: 17-24.
Dygert, S., Li, L. H., Florida, D. and Thoma, J. A. (1965) Determination of reducing sugar with improved precision. Anal. Biochem. 13: 367-374.
Fabrizia, F., Holger von, M., Douglas, H., Henriette, J.R., Bauke, W.D, Rolf, G.B., Johannes, M.F.G., Aerts, M. & Daan, F. (2002) Structure of Human Chitotriosidase. J. Biol. Chem. 277: 25537-25544.
Fenton, D. M. and Eveleigh, D. E. (1981) Purification and mode of action of a chitosanase from Penicillium islandium. J. Gen. Microbiol. 126: 151.
Flach, J., Pilt, P. E. and Jollr, P. (1992) What’s new in chitinase research ? Experieta. 48: 701-716.
Fukamizo, T., Koga, D. and Goto, S. (1995) Comparative biochemistry of chitinases-anomeric form of the reaction products. Biosci. Biotechnol. Biochem. 59: 311-313.
Glazer, A. M. and Faraney, D. (1969) Sulfonyl fluoride as inhibitor of esterase. Ⅱ Formation and reactions of phenylmethylsulfonyl α-chymotrypsin. Biochemistry. 3: 783-791.
Gold, A. M. and Fahrney, D. E. (1964) Sulfonyl fluorides as inhibitors of esterases. Ⅱ. Formation and reactions of phenylmethane sulfonyl α-chymotrypsin. Biochemistry. 3: 783-791.
Graham, L. S. and Sticklen, M. B. (1994) Plant chitinases, Can. J. Bot. 72: 1057–1083.
Hadwiger, L. A., Fristensky, B. and Riggleman, R. C. (1984) Chitosan, a natural regulator in plant-fungal pathogen interactions, increases crop yields. In Chitin, Chitosan and Related Enzymes (Zikzkis, J. P. ed.), pp. 291~302, Academic press, Orlando.
Hamel, R., Boivin, R., Tremblay, C. and Bellemare, G. (1997) Structural and evolutionary relationships among chitinase of flowering plants. J. Mol. Evol. 44: 614-624.
Hawtin, R. E., Arnold, K., Ayres, M. D., Zanotto, P. M. D., Howard, S. C., Gooday, G. W., Chappell, L. H., Kitts, P. A., King, L. A. and Possee, R. D. (1995) Identification and preliminary characterization of a chitinase gene in the autographa californica nuclear polyhedrosis virus genome. Virology. 212: 673–685.
Hejgaard, J., Jacobsen, S., Bjoirn, S. E. and Kragh, K. M. (1992) Antifungal activity of chitin-binding PR-4 type proteins from barley grain and stressed leaf. FEBS Lett. 307: 389–392.
Henrissat, B. and Bairoch, A. (1993) New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 293: 781-788.
Henrissat, B. and Bairoch, A. (1996) Updating the sequence-based classification of glycosyl hydrolases Biochem. J. 316:695-696
Hirano, S., (1988) Water-soluble glycol chitin and carboxymethyl chitin. In Methods in Enzymology (Wood, W. A. and Kellogg, S. F. Eds), Vol. 161B, pp 408-410, Academic Press. New York.
Hirano, S., Yamamoto, T., Hayashi, M., Nishida, T. and Inui, H. (1990) Chitinase activity in seeds coated with chitosan derivates. Agric. Biol. Chem. 54: 2719-2720.
Hirano, S. and Nagao, N. (1988) An improved method for the preparation of colloidal chtin by using methanesufonic acid. Agric .Biol. Chem.52:2111-2112.
Hollis, T., Honda, Y., Fukamizo, T. and Marcotte, E. (1997) Kinetics analysis of barley chitinase. Arch. Biochem. Biophys. 344: 335-342.
Howard, J. B. and Glazer, A. N. (1969) Papaya lysozyme: terminal sequence and enzymatic properties. J. Biol. Chem. 244: 1399-1409.
Huynh, Q. D., Hironaka, C. M., Levin, E. B., Smith, C. E., Borgmeyer, J. R. and Shah, D. M. (1992) Antifungal proteins from plants. Purification, molecular cloning, and antifungal properties of chitinases from maize seed. J. Biol. Chem. 267: 6635–6640.
Imoto, T. and Yagishita, K. A. (1971) A simple activity measurement of lysozyme. Agric. Biol. Chem. 35: 1154-1156.
Iseli, B., Armand, S., Boller, T., Neuhaus, J. M. and Henrissat, B. (1996) Plant chitinases use two different hydrolytic mechanisms. FEBS Lett. 382: 186-188.
Iseli, B., Boller, T., and Neuhaus, J. M. (1993) The N-terminal cysteine-rich domain of tobacco class I chitinase is essential for chitin binding but not for catalytic or antifungal activity. Plant Physiol. 103: 221–226.
Je, J. -Y., and Kim, S. -K. (2005) Water-soluble chitosan derivatives as a BACE1 inbibitor. Bioorg. Med. Chem. 13: 6551-6555.
Jekel, P. A., Hartman, J. B. H. and Beintema, J. J. (1991) The primary structure of hevamine, an enzyme with lysozyme/chitinase activity from Hevea brasiliensis latex. Eur. J. Biochem. 200: 1232130.
Jeuniaux, C. (1961) Chitinases: an addition to the list of hydrolases in the digestive tract of vertebrates. Nature. 192: 135-136
Kawasumi, T., Kiuchi, N., Futatsugi, Y., Ohba, K. and Yanagi, S. O. (1987) High yield preparation of Lentinus edodes (”Shiitake”) protoplasts with regeneration capacity and mating type stability. Agric. Biol. Chem. 51: 1649-1656.
Koga, D. (1998) Chitin enzymology-chitinase. In Advances in Chitin Science (Chen, R. H., Chen, H. C. Eds.) Scientific Advisory Program Committee. Taipei, Vol. 3. pp. 16-23.
Koga, D., Mitsutomi, M., Kono, M. and Matsumiya, M. (1999) Biochemistry of chitinases. In Chitin and Chitinase (Jolles, P. and Muzzarelli, R. A. A. eds)pp.111-123. Birkhauser Verlag, Basel, Switzerland.
Koga, D., Mizuki, K., Ide, A., Kono, M., Matsui,T. and shimizu, C. (1990) Kinetics of a chitinase from a prawn, Penaeus japonicas. Agric. Biol. Chem. 54:2505-2512
Koga, D., Tsukamoto, T., Sueshige, N., Usumi, T. and Ide, A. (1989) Kinetics of chitinases from yam, Dioscorea opposita thunb. Agric. Biol. Chem. 53: 3121-3126.
Koga, D., Sueshige, N., Orikono, K., Usumi, T., Tanaka, S., Yamada, Y. & Ide, A. (1988) Efficiency of chitinolytic enzyme in the formation of Trico-loma matsutake protoplasts. Agric. Biol. Chem. 52: 2091-2093.
Krishnan, A., Nair, P. N. & Jones, D. (1994) Isolation, cloning, and characterization of a new chitinase stored in the active form in chitin-lined venom reservoir. J. Biol. Chem. 269: 20971-20976.
Krishnaveni, S., Liang, G. H., Muthukrishnan, S. and Manickam, A. (1999) Purification and partial characterization of chitinases from sorghum seeds. Plant Sci. 144: 1-7.
Kuranda, M. J. and Robbins, P. W. (1991) Chitinase is required for cell separation during growth of Saccharomyces cerevisiae. J. Biol. Chem. 266: 19758–19767.
Lai, L.S.,wang, D.J., chang, C.T. and wang, C.H.(2006) Catalytic characteristics of purified peroxidase from wheat grass. J, Agric. Food Chem. 54:8011-8616.
Lin, Z. F., Wu, D., Luo, A. and Zhang, W. (1992) Chitinase from seeds of zea mays and coix lachrymajobi L. Purification and some properties. Process Biochemistry. 27: 83-88.
Linthorst, H. J. M. (1991) Pathogenesis-related proteins of plants, Crit. Rev. Plant Sci. 10: 123-150.
Liu, W. H., Feinstein, G., Osuga, D. T., Haynes, P. and Feeney, R. E. (1968) Modification of arginines in trypsin inhibitor by 1,2-cyclohexanedione. Biochemistry. 7: 2886-2892.
Liu, Y. P. and Speer, R. J. (1977) Chemical modification of L-asparaginase. Implication of tyrosyl and histidyl residues in the active site of E. coli asparaginase. J. Chinese Biochem. Soc. 6: 61-64.
Maehly, A.C., chance,B. (1952) The assays of catalase and peroxidase. In: Methods in Enzymology (colowick, S, D, and Kaplan, N, O.Eds)Vol.Ⅱ, pp.764-765.Academic Pren New York.
Mauch, F. and Staehelin, A. (1989) Functional implications of the subcellular localization of ethylene-induced chitinase and beta-1,3-glucanase in bean leaves, Plant Cell. 1: 447–457.
McCreath, K. J. and Gooday G. W. (1992) A rapid and sensitive microassay for determination of chitinolytic activity. J. Microassay Methods.14:229-237.
Melchers, L. S., Apotheker-de Groot, M., van der Knaap, J. A., Ponstein, A. S., Sela-Buurlage, M. B., Bol, J. F., Cornelissen, B. J. C., van den Elzen, P. J. M. and Linthorst, H. J. M. (1994) A new class of tobacco chitinases homologous to bacterial exo-chitinases displays antifugal activity. Plant J. 5: 469-480.
Mikkelsen, J. D., Berglund, L., Nielsen, K. K., Christiansen, H. and Bojen, K. (1992) Structure of endochitinase gene from sugar beets, In: Advances in Chitin and Chitosan C.J. Brine, P.A. Sandford, J.P. Zikakis (Eds.), Elsevier Science Publishers, London, pp. 344–353.
Miles, E. W. (1977) Modification of histidyl residues in proteins by diethylpyrocarbonate. In Methods in Enzymology (Hirs, C.H. W., Timasheff, S.N. Eds) Academic Press, New York, Vol. 47. pp. 431-454.
Molano, J., Puran, A. and Cabib, E. (1977) A rapid and sensitive assay of chitinase using tritiated chitin. Anal. Biochem. 83: 648.
Mommsen, T. P. (1980) Chitinase and β-N-acetylglucosaminidase from the digestive fluid of the spider, Cupiennius salei. Biochem. Biophys. Acta. 612: 361-372.
Morgan, W. T. J. and Elson, L. A. (1934) A colorimetric method for the determination of N-acetylglucosamine and N-acetylchondrosamine. Biochem. J. 28: 988–995.
Murao, S., Kawada, T., Itoh, H., Oyama, H. And shin, T. (1992) Purification and characterization of a novel type of chitinase from Vibrio alqinolyticus TK-22. Biosc. Biotechi Biochem.56:368-369.
Nanjo, F.,Saki, K., Ishikawa, M., Isobe, K. And Usui, T. (1989) Properties and transglycosylation reaction of a chitinase from Nocardia orientalis. Agric. Biol. Chem. 53:2189-2195.
Neuhaus, J. M. (1999) Plant chitinases (PR-3, PR-4, PR-8, PR-11). In Pathogenesis-Related Proteins in Plants (Datta, S.K. and Muthukrishnan, S. eds) pp. 77-105, CRC press, New York.
Neuhaus, J. M., Fritig, B., Linthorst, H. J. M., Meins, F. J., Mikkelsom, J. D. and Ryals, J. (1996) A revised nomenclature for chitinase genes. Plant Mol. Biol. Rep. 14: 102-104.
Ohno, T., Armamd, S., Hata, T., Nikaodou, N., Henrissat, B., Mitsutomi, M. and Miwa, T. (1996) A modular family 19 chitinase found in the prokaryotic organisms Sreptomyces griseus HUT 6037. J. Bacteriol. 178:5062-5070.
Ordentlich, A., Elad, Y. and Chet, I. (1988) The role of chitinase of Serratia marcescens in biocontrol of Sclerotium rolfsii. Phytopathol. 78: 84-87.
Park, C., Kim, S., Park, J. Y., Ahn, I. P., Jwa, N. S., Im, K. H. and Lee, Y. H. (2004) Molecular characterization of a pathogeaesis-related protin 8 gene encoding a class III chitinase in rice. Mol. Cells. 17: 144-150.
Patil, R. S., Ghormade, V. and Deshpande, M. V. (2000) Chitinolytic enzymes:an exploration. Enzyme Microb. Technol. 26: 473-483.
Pegg, G. F. and Young. D. A. (1981) Changes in glycosidase activity and their relationship to fungal colonization during infection of tomato by Verticilliunt alboratrum. Physiol. Plant Pathol. 19: 371-376.
Pegg, G. F. and Young, D. M. (1982) Purification and characterization of chitinase enzymes from healthy and Verticillium albo-atrum infeeted tomato plants and from V. albo-atrum. Physiol. Plant Pathol. 21: 289-309.
Perrakis. A., Tews, I., Dauter, Z., Oppenheim, A. B., Chet, I., Wilson, K. S. and Vorgias, C. E. (1994) Crystal structure of a bacterial chitinase at 2.3Å resolution. Structure. 2:1169-1180.
Reissig, J. L., Strominger, J. L. and Leloir, L. F. (1995) A modified colorimetric method for the estination of N-acetylamino sugars. J. Biol. Chem. 217: 959-966.
Robbins, P. W., Albright, C. & Benfield, B. (1988) Cloning and expression of a Streptomyces plicatus chitinase (chitinase-63) in Escherichia coli. J. Biol. Chem. 263: 443-447.
Robertus, J. D., Monzingo, A. F., Marcotte, E. M. and Hart, P. J. (1998) Structure analysis shows five glycohydrolase families diverged from a common ancestor. J. Exp. Zool. 282:127-132.
Rohini, V.K. and Rao, K.S. (2001) Transformation of peanut (Arachis hypogaea L. ) with tobaco chitinase gene: variable respoase of transfornants tobaco leaf spot disase. Plant Sci. 160:673-678.
Sampson, M. N. and Gooday, G. W. (1996) A novel chitinase assay using the fluorescent brightener Calcofluor White M2R. In Chitin Enzymology (Muzzarelli, R.AA. Ed.) Vol, 2. pp. 227-234. Atec Edizioni-Grottammare.
Seino, H., Tsukuda, K. and Shimasue, Y. (1991) Properties and action pattern of a chitosanase from Bacillus sp. 7I-7S. Agric. Biol. Chem. Vol.55 , No.9. pp.2421-2423.
Shakih, S. A. and Deshpande, M. V. (1993) Chiitinolytic enzymes: their contribution to basic and applied research. World J. Microbiol Biotechnol. 9:468-475.
Shapira, R., Ordentlich, A., Chet, I. and Oppenhiem, A. B. (1989) Control of plant disease by chitinase expressed from cloned DNA in Escherichia coli. Phytopanthol. 79: 1246-1249.
Shenoy, S. R., Shiva Kameshwari, M. N., Swaminathan, S. and Gupta, M. N. (2006) Major antifungal activity from the bulbs of Indian squill Urginea indica is a chitinase. Biotechnol. Prog. 22: 631–637.
Shimahara, M. & Takiguchi, Y. (1988) Preparation of crustacean chitin. In Methods in Enzymology. vol. 161 B: (Wood, W. A. & Kellogy, S. T.eds.) pp.417-423, Academic press, New York.
Singh, A., Kirubakaran, I. and Sakthivel, N. (2007) Heterologous expression of new antifungal chitinase from wheat. Protein Expr. Purif. 56: 100–109.
Sinnott, M. L. (1990) Catalytic mechanisms of enzymic glycosyl transfer. Chem. Rev. 90: 1171-1202.
Skujins, J. J., Potgieter, H. J. and Alexander, M. (1965) Dissolution of fungal cell walls by Streptomyces chitinase and β-1,3-glucanase. Arch. Biochem. Biophy. 111: 358-364.
Smith, P., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Prorenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. T. and Klenk, D. C. (1985) Measurement of protein using bicinchonic acid. Anal. Biochem. 15: 76-85.
Somashelcar, D. and Toseph, R. (1996) Chitosanase-properties and application: a review. Biosci. Technol. 55:35-45
Spande, T. F. and Witkop, B. (1976) Determination of the tryptophan content of proteins with N-bromosuccimide:In Methods in Enzymology (Hirs, C. H. W. Ed) Academic Press, Vol. 11, pp. 489-494.
Suarez, V., Staehelin, C., Arango, R., Holtorf, H., Hofsteenge, J. and Meins, F. (2001) Substrate specificity and antifungal activity of recombinant tobacco class I chitinases. Plant Mol. Biol. 45: 609–618.
Taira, T., Ohnuma, T., Yamagami, T., Aso, Y., Ishihara, M.(2002)Antifungnl activity of rye (Secale cereale)seed chitinases:the different binding manner of classⅠand classⅡ chitinases to the fungalcell wall. Biosci. Biotechnol. Biochem. 66:970-977.
Terwisscha van Scheltinga, A. C., Armand, S., Kalk, K. H., Isogai, A., Henrissat, B. and Dijkstra, B. W. (1995) Stereochemistry of chitin hydrolysis by a plant chitinase/lysozyme and X-ray structure of a complex with allosamidin: evidence for substrate assisted catalysis. Biochemistry. 34: 15619-15623.
Toei, K. and Kohara, T. (1976) A conductometric rnethod for colloid titration. Anal. Chim. Acta. 83:59-65.
Trudel, J. and Asselin, A. (1989) Detection of chitinase activity after polyacrylamide gel electrophoresis. Anal. Biochem. 178: 362-366.
Vad, K., Mikkelsen, J. D. and Collinge, D. B. (1991) Induction, purification and characterization of chitinase isolated from pea leaves inoculated with Ascochyta pisi. Plants. 184: 24-29.
Vangrysperre, W., Hilderson, H. K., Callens, M. and DeBruyne, C. K. (1989) Woodward’s reagent k with D-Xylose isomerase:modification of an active site carboxylase residue. Biochem. J. 260: 163-163.
Verburg, J. G., Rangwala, S. H., Samac, D. A., Luckow, V. A. and Huynh, Q. K. (1993) Examination of the role of the tyrosine-174 in the catalytic mechanism of the Arabidopsis thaliana chitinase:comparison of variant chitinases generated by site-directed mutagenesis and expressed in insecet cells using baculovirus vectors. Arch. Biochem. Biophys. 300: 223-230.
Viswanatha, T. and Lawson, W. B. (1961) The reaction of N-bromosuccimimide on chymotrypsin. Arch. Biochem. Biophys. 93: 128-134.
Watanabe, A., Nong, V. H., Zhang, D. Y., Arahira, M., Yeboah, N. A., Udaka, K. and Fukazawa, C. (1999) Molecular cloning and ethylene-inducible expression of Chib1 chitinase from soybean(Glycine max(L.)Merr.). Biosci. Biotechnol. Biochem. 63 (2) : 251-256.
Wadsworth, S. and Zikakis, J. (1984) Chitinase from soybean seeds:purification and some properties of the enzyme system. J. Agric. Food Chem. 32: 1284-1288.
Welches, W. R. and Baldwin, T. D. (1981) Active center studies on bacterial luciferase:modification of the enzyme with 2,4-dinitroflurobenzene. Biochemistry, 20: 512-515.
Yamagami, T., Tanigawa, M. and Funatsu, G. (1993) Purification and some properties of three chitinase from the seeds of rye (Secale cereale). Biosic. Biotechnol. Biochem. 57: 643-647.
Yamada, H., and Imoto, T. (1981) A convenient synthesis of glycol chitin, a substrate of lysozyme. Carbohydr. Res. 92: 160-162.
Yamasaki, N., kajiwara, J. Morimoro, K. (1989) Chemical modificatopn of ricin D with N-acetylimidazole. Agric. Biol. Chem. 53: 1617-1623.
Zhao, K. J. and Chye, M. L. (1999) Methyl jasmonate induce expression of a novel Brassica juncea chitinase with two chitin-binding domains. Plant. Mol. Biol. 40: 1009-1018.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔