跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/02/19 19:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳盈志
研究生(外文):Ying-Chih Chen
論文名稱:具鎳摻雜之ITO複層膜對P3HT:PCBM太陽能電池之特性影響研究
論文名稱(外文):Effect of nickel-doped ITO/ITO on characteristics of P3HT:PCBM based organic solar cells
指導教授:許進明許進明引用關係
指導教授(外文):Ching-Ming Hsu
學位類別:碩士
校院名稱:南台科技大學
系所名稱:光電工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:100
畢業學年度:99
語文別:中文
論文頁數:50
中文關鍵詞:有機太陽能電池氧化銦錫
外文關鍵詞:OSCITONi
相關次數:
  • 被引用被引用:1
  • 點閱點閱:257
  • 評分評分:
  • 下載下載:48
  • 收藏至我的研究室書目清單書目收藏:0
氧化銦錫(ITO)為有機薄膜太陽能電池(OSC)以及平面顯示器最為廣泛使用的一種電極材料,因為它具有穩定的光學與電特性。而要達到高轉換效率與長壽命的OSC元件特性要求,ITO透明導電膜除了基本的優良光學與電特性之外,也必須具有平整的微觀表面以及高的表面功函數。本研究利用濺鍍法將Ni摻雜於ITO薄膜,欲提升ITO薄膜的功函數,並藉此改善OSC的光電轉換效率(PCE)。
研究方式為利用射頻濺鍍的方法於ITO薄膜上沉積50nm Ni摻雜之ITO薄膜,以形成Ni-ITO/ITO雙層透明導電薄膜。並針對此薄膜作一系統化之特性量測,如片電阻值、光穿透率與表面粗糙度等。實驗結果顯示,Ni-ITO/ITO複層膜之片電阻值與ITO膜差異不大,分別為7.9Ω/□與7.7Ω/□。光穿透率則由90.8%下降至85.5%。
在以Ni-ITO/ITO複層膜作為陽極,應用於P3HT:PCBM為吸收層的有機薄膜太陽能電池元件方面,元件之製作過程先以O2 plasma進行ITO表面處理,再以Spin coating方式塗佈PEDOT:PSS buffer layer與P3HT:PCBM active layer,最後以E-beam蒸鍍Al陰極層,以形成Glass/ITO/PEDOT:PSS/P3HT:PCBM/Al之有機太陽能電池元件結構,最後再進行150℃ 10min之熱退火,探討不同厚度之PEDOT:PSS(40、60、80nm)與P3HT:PCBM(50、70、90nm)以及Ni-ITO/ITO複層電極對於OSC元件光電特性的影響。
實驗結果顯示,元件特性參數並沒有預期中比陽極為純ITO元件高,可能原因之一為Ni 摻雜 ITO使光穿透率從90.2%下降至85.3%。如以純ITO為陽極,當PEDOT:PSS與P3HT:PCBM厚度分別為80nm與70nm時,元件有最佳之特性,特性參數分別為Voc= 0.59V、Jsc= 1.96mA/cm2、FF= 0.53與PCE= 0.62%。
The fabrication of indium tin oxide (ITO) transparent conductive film has been a mature technology and been practically employed for organic thin film solar cells and organic light-emitting diodes. However, several ITO film properties need to be improved for organic thin film solar cell organic solar cell (OSC) applications, such as the ITO surface work function and roughness. This work tried to use nickel doped ITO anode to increase ITO surface work function and so as to improve the power conversion efficiency (PCE) of P3HT:PCBM based OSCs.
The Ni doped ITO film is 50nm thick and is prepared using r.f. sputtering. ITO film characteristics, such as sheet resistance, optical transmittance and surface roughness were examined. The result shows that Ni-ITO/ ITO and ITO have similar sheet resistance of 7.9Ω/□ and 7.7Ω/□, respectively. The Ni-doped ITO has a lower optical transmittance (85.5%) than conventional ITO (90.8%).
The OSC has a structure of ITO / Ni-ITO(50nm) / poly (3,4-ethylenedioxyth-
iophene):poly(styrene sulfonate) PEDOT:PSS(40、60、80nm) / poly(3-hexylthiophene): [6,6]-phenylC61 butyric acid methyl ester P3HT:PCBM(50、70、90nm) / Al (200nm) solar cell. PEDOT:PSS buffer and P3HT:PCBM active layer were deposited by spin coating and devices were annealed at 150℃ for 10min.
Results showed that OSC devices with a Ni-doped ITO anode did not have improve characteristics. The causes maybe due to the lower optical transmittance of Ni-doped ITO (85.3%) than the conventional ITO of 90.2%. Using a conventional ITO anode and with PEDOT:PSS=80nm and P3HT:PCBM=70nm, the OSC has the best performance with the performance parameters Voc= 0.59V, Jsc= 1.96mA/cm2, FF= 0.53,PCE= 0.62%.
摘要........................................................................................................................i
Abstract...................................................................................................................ii
致謝..........................................................................................................................iv
目次............................................................................................................................v
圖目錄.........................................................................................................................vii
表目錄..............................................................................................................................ix
第一章 緒論.............................................................................................................1
第二章 背景原理.....................................................................................................3
2-1有機太陽能電池背景.........................................................................3
2-2 有機太陽能電池構造.......................................................................6
2-3 有機太陽能電池原理.......................................................................7
2-3-1 激子產生方式...........................................................................8
2-3-2 有機太陽能電池之等效電路............................................................9
2-3-3 太陽光光譜...............................................................................10
2-3-4 有機太陽能電池各參數............................................................11
2-4 研究目的..............................................................................................14
第三章 實驗步驟...................................................................................................15
3-1 實驗前述..............................................................................................15
3-2 OSC元件製作.......................................................................................15
3-2-1 實驗上使用材料與基板................................................................15
3-2-2 調配主動層之有機材料................................................................16
3-2-3 基板洗淨實驗步驟流程圖..............................................................17
3-2-4 基板洗淨..........................................................................................18
3-2-5 Ni摻雜ITO薄膜之製作.............................................................19
3-2-6 黃光微影進行ITO之蝕刻....................................................................20
3-2-7 以PECVD進行表面O2 Plasma處理................................................21
3-2-8 有機層製作.......................................................................................23
3-2-9 絕緣、電極層製作...........................................................................25
3-2-10 元件退火.........................................................................................27
3-2-11 OSC元件結構.................................................................................28
3-3 特性量測.......................................................................................................29
3-3-1 薄膜特性量測....................................................................................29
3-3-2 I-V特性量測.....................................................................................32
第四章 結果與討論..................................................................................................34
4-1 Ni摻雜ITO之光電特性............................................................................34
4-1-1 Ni摻雜ITO之片電阻........................................................................34
4-1-2 Ni摻雜ITO之穿透率........................................................................35
4-1-3 Ni摻雜ITO之表面粗糙度..............................................................36
4-2 PEDOT:PSS buffer layer之特性.............................................................37
4-2-1 PEDOT:PSS之吸收光譜.............................................................37
4-2-2 PEDOT:PSS之表面型態.............................................................37
4-3 P3HT:PCBM active layer之特性............................................................40
4-3-1 P3HT:PCBM之吸收光譜................................................................40
4-3-2 P3HT:PCBM之表面型態..............................................................40
4-4 P3HT:PCBM太陽能電池特性........................................................42
4-4-1 ITO膜基板對於元件特性的影響…...............................................42
4-5 比較陽極有無摻雜Ni doped ITO之元件特性參數.......................................43
第五章 結論.............................................................................................................46
Reference...................................................................................................................47

圖 目 錄
圖2-1 太陽能電池的種類............................................................................................. 3
圖2-2 OSC的元件結構..................................................................................................6
圖2-3 OSC的動作原理..................................................................................................8
圖2-4 有機薄膜太陽電池的等效電路圖.....................................................................10
圖2-5 AM1.5與太陽光譜的分佈圖............................................................................11
圖2-6 空氣質量(Air Mass)示意圖...............................................................................11
圖2-7 太陽能電池IV曲線圖......................................................................................13
圖3-1 有機材料化學式結構圖:(a) Buffer Layer PEDOT:PSS (b) Donor Layer P3HT
(c) Acceptor Layer PCBM.....................................16
圖3-2 本實驗所使用之微量天平.............................................................................17
圖3-3 調配主動層之示意圖.............................................................................17
圖3-4 本研究實驗主要步驟流程圖............................................................................18
圖3-5 單靶3%-Ni ITO濺鍍(Sputter)系統示意圖....................................................19
圖3-6 3%-Ni ITO薄膜製作流程圖(a)ITO基板洗淨(b)利用射頻濺鍍方式沉積
50nm之3%-Ni ITO薄膜…..............................................................................19
圖3-7 本實驗所使用之UV曝光機.............................................................................20
圖3-8 OSC之陽極........................................................................................................21
圖3-9 PECVD:(a)O2 Plasma處理示意圖(b)本實驗所使用之PECVD裝置...........22
圖3-10 旋轉塗佈機:(a)旋轉塗佈示意圖(b)本實驗所使用之旋轉塗佈機裝置........24
圖3-11 無絕緣層之OSC元件示意圖...........................................................................26
圖3-12 E-beam真空蒸鍍裝置(a) E-beam真空蒸鍍裝置內部示意圖(b)本實驗所使用
之E-beam真空蒸鍍裝置....................................................................................27
圖3-13 本實驗所使用之退火裝置...............................................................................28
圖3-14 OSC元件示意圖................................................................................................28
圖3-15 OSC元件結構圖................................................................................................29
圖3-16 紫外光/可見光(UV-VIS)光譜儀......................................................................30
圖3-17 四點探針(a)四點探針示意圖(b)本實驗所使用之四點探針裝置….........31
圖3-18 場發射掃描式電子顯微鏡量測裝置...............................................................32
圖3-19 AM1.5太陽能模擬裝置..................................................................................33
圖4-1 ITO玻璃與Ni doped ITO玻璃結構示意圖....................................................34
圖4-2 EDS分析ITO其成分所佔有比例......................................................................34
圖4-3 EDS分析Ni doped ITO其Ni成分所佔有比例..............................................34
圖4-4純ITO與Ni-ITO光穿透率光譜圖.....................................................................35
圖4-5 (a)純ITO之AFM之3D表面型態圖,(b)Ni-ITO之AFM之3D表面型態
圖........................................................................................................................ 36
圖4-6 PEDOT:PSS厚度40、60、80nm吸收光譜圖.......................................................37
圖4-7 PEDOT:PSS厚度分別為(a)40nm (b) 60nm與(c) 80nm時之AFM 3D表面型態
圖.................................................................................................................39
圖4-8 PEDOT:PSS厚度與平均粗糙度之關係圖.........................................................39
圖4-9 P3HT:PCBM經過150℃ 10min熱退火後之吸收光譜圖..................................40
圖4-10 (a)P3HT:PCBM成膜後之AFM表面型態圖,(b)P3HT:PCBM膜經過150℃ 10min退火後之AFM表面型態圖................................................................................41
圖4-11 OSC元件結構圖................................................................................................42
圖4-12改變PEDOT:PSS厚度40、60、80nm時,元件電流密度與P3HT:PCBM厚度之關係...............................................................................................................43
圖4-13 P3HT:PCBM厚度固定為70nm時,元件在PEDOT:PSS厚度為40、60、80nm
時之J-V曲線圖................................................................................................43圖4-14 P3HT:PCBM厚度=70nm,PEDOT:PSS厚度為40、60、80nm時,元件電流密度之變化情形...............................................................................................44
圖4-15 P3HT:PCBM厚度70nm,其PEDOT:PSS厚度40、60、80nm 與Voc、Jsc、
FF、PCE之關係................................................................................................45
表 目 錄
表4-1陽極為ITO + Ni doped ITO元件之Voc、Jsc、FF、PCE.......................................44
表4-2陽極為純ITO元件之Voc、Jsc、FF、PCE...........................................................44
[1]日本電気学会 「エネルギー基礎論」, (1989) 2.
[2]J. Xue, S. Uchida, B. P. Rand and S. R. Forrest, “Asymmetric tandem organic photovoltaic cells with hybrid planar-mixed molecular heterojunctions”, Appl. Phys. Lett., 85 (2004) 5757.
[3]J.Y. Kim, K. Lee, N.E. Coates, D. Moses, T.-Q. Nguyen, A.J. Heeger,Science 317 (2007).
[4]P. Peumans, V. Bulovic and S.R. Forrest, “Efficient photon harvesting at high optical intensities in ultrathin orgnic double-heterstructure photovoltaic diodes”, Applied Physics Letters vol.76, Number 19, p.2650 (2000).
[5]P. Peumans, and S.R. Forrest, “Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells”, Applied Physics Letters vol,79,Number 1, p.126 (2001).
[6]C. W. Tang, “Two-layer organic photovoltaic cell”, Appl. Phys. Lett., 48 (1986) 183.
[7]M. Hiramoto, H. Fujiwara and M. Yokoyama, “Three-layered organic solar cell with a photoactive interlayer of codeposited pigments”, Appl. Phys. Lett., 58 (1986) 1062.
[8]P. Peumans and S. R. Forrest, “Very-high-efficiency double-heterostructure copper phthalocyanine / C60 photovoltaic cells”, Appl. Phys. Lett., 79 (2001) 126.
[9]J. Xue, S. Uchida, B. P. Rand and S. R. Forrest, “Asymmetric tandem organic photovoltaic cells with hybrid planar-mixed molecular heterojunctions”, Appl. Phys. Lett., 85 (2004) 5757.
[10]W. Ma, C. Yang, X. Gong , K. Lee and A. J. Heeger, “Thermally Stable, Efficient Polymer Solar cells with Nanoscale Control of the Interpenetrating Network Morphology”, Adv. Funct. Mater., 15 (2005) 1617.

[11]J. Y. Kim, S. H. Kim, H. H. Lee, W. Ma, X. Gong and A. J. Heeger, “New Architecture for High-Efficiency Polymer Photovoltaic Cells Using Solution- Based Titanium Oxide as an Optical Spacer”, Adv. Mater., 18 (2006) 572.
[12]J. Meier, J. Spitznagel, U. Kroll, C. Bucher, S. Fay, T. Moriarty and A. Shah, Proc. 3rd World Conf. Photovoltaic Energy Conversion, Osaka, 2003, 5O-A6-02.
[13]S. Okamoto, A. Terakawa, E. Maruyama, W. Shinohara, Y. Hishikawa and S. Kiyama, Proc. 28th IEEE Photovoltaic Specialists Conf., Anchorage, 2000, 736
[14]A. Takano, M. Tanda, M. Shimozawa, T. Wada and T. Kamoshita, “Excitation Frequency Effects on Stabilized Efficiency of Large-Area Amorphous Silicon Solar Cells Using Flexible Plastic Film Substrate”, Jpn. J. Appl. Phys., 42 (2003) L1312.
[15]M. A. Green, K. Emery, D. L. King, Y. Hishikawa and W. Warta, “Solar Cell Efficiency Tables (Version 29)”, Prog. Photovoltaics: Res. Appl., 15 (2007) 35.L. A. A. Pettersson, L. S. Roman and O. Inganäs, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films”, J. Appl. Phys., 86 (1999) 487.
[16]T. Taima, M. Chikamatsu, Y. Yoshida, K. Saito and K. Yase, “Effects of intrinsic layer thickness on solar cell parameters of organic p-i-n heterojunction photovoltaic cells”, Appl. Phys. Lett., 85 (2004) 6412.
[17]T. Taima, M. Chikamatsu, Y. Yoshida, K. Saito and K. Yase, “Effects of intrinsic layer thickness on solar cell parameters of organic p-i-n heterojunction photovoltaic cells”, Appl. Phys. Lett., 85 (2004) 6412.
[18]J.Y. Kim, S.H. Kim, H.-H. Lee, K. Lee, W. Ma, X. Gong, A.J. Heeger, New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer, Adv. Mater. 18 (2006) 572–576.
[19]Y. Kim, S. Cook, S.M. Tuladhar, S.A. Choulis, J. Nelson, J.R. Durrant, D.D.C. Bradley, M. Giles, I. McCulloch, C.-S. Ha, M. Ree, A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency poly-thiophene:fullerene solar cells, Nat. Mater. 5 (2006) 197–203.

[20]S. Yoo, W.J. Potscavage, B. Domercq, J. Kim, J. Holt, B. Kippelen, Integrated organic photovoltaic modules with a scalable voltage output, Appl. Phys. Lett. 89 (2006) 233516.
[21]吳國偉,許進明。"鎳嵌入與鎳摻雜氧化銦錫薄膜應用於有機薄膜太陽能電池之研究",南台科技大學光電工程研究所碩士學位論文,2009/07.
[22]A. Yakimov and S. R. Forrest, “High photovoltage multiple-heterojunction organic solar cells incorporating interfacial metallic nanoclusters”, Appl. Phys. Lett., 80 (2000) 1667.
[23]S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz and J. C. Hummelen, “2.5% efficient organic plastic solar cell”, Appl. Phys. Lett., 78 (2000) 841.
[24]V. P. Singh, R. S. Singh, B. Parthasarathy and A. Aguilera, “Copper- phthalocyanine-based organic solar cells with high open-circuit voltage”, Appl. Phys. Lett., 86 (2005) 082106.
[25]N. S. Sariciftci, “Plastic photovoltaic devices”, materialstoday, September (2004) 36.
[26]吳奉修,張美濙, "無機奈米金屬/共軛高分子混層材料作為高分子太陽能電池之研究", 國立中山大學光電工程學系碩士論文,2009/07.
[27]C.Kittel, Introduction to Solid State Physics, Chapter 11,John Wiley and Sons,New York (1996).
[28]林思佑,周維揚, "五環素/駢苯衍生物有機太陽能電池之研究",國立成功大學光電科學與工程研究所碩士論文,2007/07.
[29]李信輝,許進明。"以單靶射頻濺鍍法制作鎳摻雜氧化銦錫薄膜應用於有機發光二極體之研究",南台科技大學光電工程研究所碩士學位論文,2007/07.
[30]石政言,黃家華, "利用元件後段處理與主動層有機溶劑改善有機太陽電池之短路電流密度",國立東華大學電機工程學系碩士論文,2005/07.

[31]C.M. Hsu, C.S. Kuo, W.C. Hsu, W.T. Wu, Nickel doped indium tin oxide anode and effect on dark spot development of organic light-emitting devices, Applied Surface Science 255 (2009) 3759–3763
[32]W.H. Baek, H. Yang, T.S. Yoon, C.J. Kang, H.H. Lee, Y-S Kim, “Effect of P3HT:PCBM concentration in solvent on performances of organic solar cells” Solar Energy Materials & Solar Cells 93 (2009) 1263–1267.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 盧美貴(1993)。幼稚園與小學課程銜接問題之研究。幼兒教育學報,2,215-246。
2. 廖永靜(1988)。親職教育與父母參與。家庭教育,1,15-22。
3. 廖永靜(1988)。親職教育與父母參與。家庭教育,1,15-22。
4. 廖永靜(1988)。親職教育與父母參與。家庭教育,1,15-22。
5. 廖永靜(1988)。親職教育與父母參與。家庭教育,1,15-22。
6. 陳麗如(2001)。我國轉銜服務相關條文之整述與評析。特殊教育季刊,81,19-27。
7. 陳麗如(2001)。我國轉銜服務相關條文之整述與評析。特殊教育季刊,81,19-27。
8. 陳麗如(2001)。我國轉銜服務相關條文之整述與評析。特殊教育季刊,81,19-27。
9. 陳麗如(2001)。我國轉銜服務相關條文之整述與評析。特殊教育季刊,81,19-27。
10. 陳昭銘(2001)。特教團隊合作—幼小銜接的作法。國小特殊教育,32,49-53。
11. 陳昭銘(2001)。特教團隊合作—幼小銜接的作法。國小特殊教育,32,49-53。
12. 陳昭銘(2001)。特教團隊合作—幼小銜接的作法。國小特殊教育,32,49-53。
13. 陳昭銘(2001)。特教團隊合作—幼小銜接的作法。國小特殊教育,32,49-53。
14. 張翠娥(2003)。融合教育幼小轉銜轉銜論題探討。屏東師院學報,18,307-330。
15. 張翠娥(2003)。融合教育幼小轉銜轉銜論題探討。屏東師院學報,18,307-330。