跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:1fb:e713:2b67:6e79) 您好!臺灣時間:2024/12/12 15:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張偉國
研究生(外文):Wei-Kuo Chang
論文名稱:10位元20MHz管線式類比數位轉換器設計
論文名稱(外文):Design of a 10-bit 20MHz Pipelined Analog-to-Digital Converter
指導教授:汪輝明
指導教授(外文):Hwi-Ming Wang
學位類別:碩士
校院名稱:南台科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:70
中文關鍵詞:類比數位轉換器管線式架構1.5-bit/stage數位錯誤修正電路
外文關鍵詞:analog to digital converterpipeline architecture1.5-bit/stagedigital error correction circuit
相關次數:
  • 被引用被引用:0
  • 點閱點閱:201
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著數位訊號的應用日趨成熟與普遍,高速高解析度ADC常運用於消費性產品中,如高畫質電視(High Definition TV),第三代之行動通訊系統(3G mobile phone),高速資料擷取系統(High speed data acquisition system),因其訊號之頻寬大,所以都需要取樣率超過10甚至20Ms/s以上之高解析度的類比數位轉換器(Analog-to-digital converter, ADC),管線式架構(Pipeline architecture)之類比數位轉換器能符合高取樣速度及高解析度之類比數位轉換器的設計要求。
本論文設計出每級1.5位元組成有十位元解析度每秒取樣20MHz的管線式類比數位轉換器。其架構為九階段(Stage)的管線式類比數位轉換器,前八個階段採用1.5-bit/stage的技術,最後一個階段則為一個2-bit的快閃式類比數位轉換器。取樣保持電路 (Sample-and-hold)與digital-to-Analog converter (DAC)/減法器/增益級(Multiplying DAC)使用開關電容電路來完成,最後在所有級數的輸出經由數位錯誤修正電路而得到十位元的數位輸出碼。
依據Hspice模擬結果,整個管線式類比數位轉換器可操作在20MHz之取樣頻率,在2.014MHz之輸入頻率下,其訊號雜訊失真比為54.47dB、無雜散動態範圍為59dB,有效位元數為8.76位元。
With the mature and universal of digital signal application, the high-speed and high-resolution analog to digital converter (ADC) often are used in some consumer products, such as high definition TV, the third generation of mobile communication systems, and high speed data acquisition system. Because the application on higher bandwidth requirement is growing, the need to sample more than 10 or even 20Ms/s on high-resolution ADC become more popular. The pipeline architecture used in the ADC design can meet the high sampling rate and high resolution requirement.
In this thesis, the proposed pipeline architecture has nine stages, 1.5 bits for each stage, can reach 10-bit resolution at sampling frequency of 20MHz. The first eight stages uses 1.5-bit/stage sub-ADC, compared to the last stage of a 2-bit flash analog to digital converter. Sample hold circuits, DAC, subtract, and gain stage uses the switched-capacitor (SC) circuit to realize. In the end, ten complimentary bit digital output codes are outputted by the digital error correction circuit.
Hspice simulation results show the whole pipeline analog to digital converter can operate at the sampling frequency of 20MHz; in 2.014MHz input frequency, distortion of the signal to noise ratio (SNDR) of 54.47dB, spurious-free dynamic range (SFDR) can be 59dB, and the effective number of bits 8.76 bits.
摘 要.........................................................v
Abstract......................................................vi
目 次................... ......................................vii
表目錄.........................................................ix
圖目錄.........................................................x
第一章 緒論.....................................................1
1.1 研究動機及發展現況...........................................1
1.2 論文組織....................................................2
第二章 類比數位轉換器介紹.........................................4
2.1 類比數位轉換器簡介...........................................4
2.1.1 超取樣轉換器(Oversampling A/D Converter)..................4
2.1.2 奈奎氏轉換器(Nyquist Rate A/D Converter)..................5
2.2 類比/數位轉換器的基本概念.....................................6
2.2.1 動態性能(DynamicPerformance)..............................6
2.2.2 靜態性能(Static Performance)..............................11
2.3高速類比數位轉換器架構.........................................14
2.3.1快閃式類比數位轉換器(Flash ADC)..............................14
2.3.2分時並行式類比數位轉換器(Time-Interleaved Parallel ADC).......15
2.3.3兩階段快閃式類比數位轉換器(Two-Step Flash ADC)................17
2.3.4 管線式類比數位轉換器(Pipelined ADC)..........................18
第三章 管線式類比數位轉換器架構介紹與分析.............................20
3.1 1.5位元/階段之管線式類比數位轉換器架構..........................20
3.1.1 管線式類比數位轉換器的數位錯誤更正.............................20
3.2 取樣保持電路..................................................24
3.3 倍乘式類比數位轉換器...........................................26
3.4 子類比數位轉換器...............................................27
3.5 管線式類比數位轉換器中非理想效應.................................28
3.5.1 增益誤差....................................................29
3.5.2 數位類比轉換器誤差...........................................31
3.5.3 非線性度誤差................................................32
第四章 電路設計與模擬結果...........................................35
4.1 開關式電容(Switch capacitor, SC)電路...........................35
4.1.1 MOS開關.....................................................35
4.1.2 通道電荷注入效應(Charge Injection)...........................38
4.1.3 時脈饋入效應(Clock feed-through).............................40
4.1.4 熱雜訊(thermal noise).......................................41
4.2 運算放大器(Operational Amplifier)..............................42
4.3 前端取樣保持電路(Sample and hold circuit, S/H)..................48
4.4 倍乘式數位類比轉換器(Multiplying DAC, MDAC).....................50
4.5 子類比數位轉換器(Sub-ADC).......................................54
4.5.1比較器電路....................................................54
4.5.2 1.5-bit子類比數位轉換器.......................................56
4.5.3 2-bit子類比數位轉換器.........................................57
4.6 時脈產生器(Clock Generator)....................................58
4.7 暫存器(Register)...............................................60
4.8 數位錯誤更正....................................................61
4.9 十位元管線式類比數位轉換器模擬結果.................................64
第五章 結論及未來展望................................................67
參考文獻............................................................68
[1]D. A. Johns and K. Martin, Analog Integrated Circuit Design, John Wily & Sons, Inc, 1997.
[2]P. E. Allen, CMOS analog circuit design -2nd, Oxford University Press, Inc, 2002.
[3]B. Razavi, Principles of Data Conversion System Design, IEEE Press, 1995.
[4]J. Doernberg, H. S. Lee, and D. A. Hodges, “Full-Speed Testing of A/D Converters”, IEEE J. Solid-State Circuits, Vol. SC-19, No.6, pp.820-827, Dec. 1984.
[5]M. Choi, A. A. Abidi, “A 6b 1.3GSample/s A/D Converter in 0.35μm CMOS,” in Dig. Tech. Papers International Solid-State Circuits Conference, pp. 126–127, Feb. 2001.
[6]G. Geelen, “A 6b 1.1GSample/s CMOS A/D Converter,” in Dig. Tech. Papers International Solid-State Circuits Conference, pp. 128–129, Feb. 2001.
[7]L. Sumanen, M. Waltrai, and K. Halonen. “A 10-bit 200MS/s CMOS parallel Pipeline A/D Converter,” IEEE J. Solid-State Circuits, Vol.36, No.2, pp. 1048-1055, July 2001.
[8]J. Doernberg, P. R. Gray, and D. A. Hodges, “A 10-bit 5Msample/s Cmos Two-Step Flash ADC, ” IEEE J.Solid-State Circuits, Vol. 24, No. 2, pp. 241-249, Apr. 1999.
[9]B. Razavi and B. A. Wooley, “A 12-b 5Msample/s Two-Step CMOS ADC, ” IEEE J.Solid-State Circuits, Vol. 27, No 12, pp. 1667-1678, Dec. 1992.
[10]M. H. Liu and S.I.Liu, “An 8-Bit 10MS/s Folding and Interpolating ADC Using the Continuous-Time Auto-Zero Technique, ” IEEE J. Solid-State Circuits, Vol 36, No.1, pp. 122-128, Jan. 2001.
[11]A. M. Abo and P. R. Gray, “A 1.5v 10-bit, 14MS/s CMOS Pipeline Analog-to-Digital Converter, ”VLSI Circuits, 1998. Digest of Technical Papers. Symposium on, 1998.
[12]P. C. Yu and H. S. Lee, “A 2.5-v, 12-bit, 5Msamples/s pipelined CMPS ADC, ” IEEE J. Solid-State Circuits, Vol.31, NO. 12,pp.1854-1861, Dec. 1996.
[13]S. Lewis, H. S. Fetterman, G. F. Gross, T. R. Viswanathan, “10b 20Msample/s Analog-to-Digital Converter,” IEEE J. Solid-State Circuits, Vol. 27, No.3, pp. 351-358, Mar. 1992.
[14]Andrew Masami Abo, “Design for Reliability of Low-Voltage, Switched-Capacitor Circuits,” PhD Thesis, University of California, Berkeley, May 1999.
[15]Kuang-Wei Cheng, “A 1.0-V, 10-Bit CMOS Pipelined Analog-to-Digital Converter,” NTU Master Thesis, 2001.
[16]W. Yang, D. Kelly, I.Mehr, M. T. Sayuk, and L. Singer, “A 3-V 340-mW 14-b 75-Msample/s CMOS ADC with 85-dB SFDR at Nyquist Input, ” IEEE J. Solid-State Circuits, Vol. 36, pp. 1931-1936, Dec. 2001.
[17]S. H. Lweis, “Video-rate analog-to-digital conversion using pipelined architectures, ”Ph.D. dissertation, U. C. Berkeley, 1987.
[18]Y. M.Lin, “Perfurmance Limitations on High Resolution Video Rate Analog Digital Interfaces, ” Ph.D. dissertation, U. C. Berkeley, 1990.
[19]M. Daito, H.Matsui, M. Ueda and K. Iizuka, “A 14-bit 20-MS/s Pipelined ADC with Digital Distortion Calibration, ” IEEE J. Solid-State Circuits, Vol. 41, pp. 2417-2423, Nov. 2006.
[20]W. Sansen, “Distortion in elementary transistor circuits, ”IEEE Transactions on circuits and systems-II, Analog Digit. Signal Process, Vol. 46, pp. 315-325, Mar.1999.
[21]Y. M. Lin, B. Kim, and P. R. Gray, “A 13-b 2.5-MHz self-calibrated pipelined A/D converter in 3u CMOS, ” IEEE J. Solid-State Circuits, Vol. 26, pp. 628-636, Apr. 1991.
[22]A. N. Karanicolas and H. S. Lee, “A 15-b 1-Msamples/s digitally self-calibrated pipeline ADC, ” IEEE J. Solid-State Circuits, Vol. 28, pp. 1207-1215, Dec. 1991.
[23]H. C. Liu, Z. M. Lee, and J. T. Wu, “A 15-b 40-MS/s CMOS Pipelined Analog to Digital Converter With Digital background calibration, ” IEEE J. Solid-State Circuits, Vol. 40, pp. 1047-1056, Feb. 2004.
[24]Behzad Razavi, ”Design of Analog CMOS Integrated Circuit,” McGraw-Hill, Boston, 2001.
[25]J. Steensgaard, “Bootstrapped low-voltage analog switches,” in Proc. IEEE int. Symp. Circuits and System (ISCAS), vol.2, pp. 29-32, May. 1999.
[26]Hsien-Chun Liu, ”Design of a 100MHz 10-Bit Analog to Digital Converter with Pipeline Architecture,” Master Thesis, National Chiao-Tung University, May 2003.
[27]I-Jen Chao, ”Design of a 10-Bit 50MHz Pipelined Analog to Digital Converter,” Master Thesis, Kun Shan University, April 2007.
[28]Yu-Yun Huang, ”10-bit 50MHx Sampling Rate CMOS Pipelined Analog-to-Digital Converter,” Master Thesis, National Yunlin University of Science & Technology, June 2004.
[29]G. M. Yin, F. Op’t Eynde, and W. Sansen, “A High-Speed CMOS Comparator with 8-b Resolution”, IEEE Journal of Solid-State Circuits, vol. 27, pp.208-211, Feb. 1992.
[30]Y. Geerts, A. M. Marques, M. S. J. Steyaert, and W. Sansen, “A 3.3V, 15bit, Delta-Sigma ADC with a Signal Bandwidth of 1.1MHz for ADSL Applications”, IEEE Journal of Solid-State Circuits, vol. 34, pp.927-936, July 1999.
[31]John P. Uyemura, ”CMOS Logic Circuit Design,” Kluwer Academic Publishers, Boston, 1999.
[32]N. Ekekwe and C. Ekenedu, ” A Pipelined 12-bit Analog-to-Digital Converter with Continuous On-Chip Digital Correction,” in Proceedings of the IEEE International conference on Circuits and Systems(ICECS 2007), pp. 669-672, Dec. 2007
[33]Daisuke Miyazaki, Shoji Kawahito, and Masanori Furuta, “A 10-b 30-MS/s Low-Power Pipelined CMOS A/D Converter Using a Pseudodifferential Architecture,” IEEE Journal of Solid-State Circuits, Vol. 38, pp.369-373, Feb. 2003
[34]Iuri Mehr and Larry Singer, “A 55-mW, 10-bit, 40-Msample/s Nyquist-Rate CMOS ADC,” IEEE Journal of Solid-State Circuits, Vol. 35, pp. 318 -325, Mar. 2000
[35]Seung-Tak Ryu, Bang-Sup Song, and Kantilal Bacrania, “A 10-bit 50-MS/s Pipelined ADC With Opamp Current Reuse”, IEEE Journal of Solid-State Circuits, Vol. 42, pp. 475 - 485, Mar. 2007
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top