跳到主要內容

臺灣博碩士論文加值系統

(44.221.66.130) 您好!臺灣時間:2024/06/20 23:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡曜全
研究生(外文):Tsai, Yao-Chuan
論文名稱:高倍率甲狀腺組織細胞之顯微影像特徵分析系統
論文名稱(外文):Microscopic Image Feature Analysis System for Thyroid Tumor Pathologic Tissue Images on High-magnification Scales
指導教授:陳彥廷陳彥廷引用關係
指導教授(外文):Chen, Yen-Ting
學位類別:碩士
校院名稱:南台科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:53
中文關鍵詞:甲狀腺顯微影像特徵分析
外文關鍵詞:ThyroidMicroscopic ImageFeature Analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:174
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究延續先前研究成果,針對甲狀腺腫瘤病理組織之高倍率顯微影像的組織及細胞影像型態特徵進行分析,系統。組織影像特徵往往需要仰賴醫師的專業知識與經驗判斷,然經驗判斷法則是屬於主觀的觀察,而無一定量化的標準,高倍率(1000X)的細胞型態往往與病變直接相關,尤其細胞核的特徵變化明顯往往與癌症具有密切的相關性。本研究針對高倍率甲狀腺組織細胞影像進行特徵量化,將現行用於臨床診斷的顯微影像資訊進行電腦自動化的分析。在先前的研究中,已運用紋理分析的技術,針對低倍率的組織影像進行紋理分析的研究,探討低倍率顯微影像下甲狀腺腫病徵與紋理型態分佈的相關性。本研究進行高倍率組織影像的細胞型態分析,以適應性區域分割的影像處理技術將細胞核的影像由其他組織及背景分離出來,採用色調、面積、能量等13種影像及型態參數量化細胞核的特徵,運用統計分析將參數分佈加以歸類分析,對於正常甲狀腺濾泡細胞核的判斷正確率為95.55%,而常見的濾泡細胞核之乳突癌均能正確辨識,因此本系統具有可提供作為臨床診斷組織影像分析輔助工具的能力。
The morphological features and image features of the nuclei represent meaningful characteristics, especially in the microscopic tissue image on high-magnification scales. Referring to the clinical empirical rules of physician, this study aims to develop a image-based classification system using the high-magnification microscopic image of thyroid tumor. The high-magnification(1000X) microscopic images of cells and tissue are important materials for clinical observation in the screening of various cancer. This study applied the adaptive region segmentation approach to extract the image of nuclei from the background and other tissues. The 13 morphological and image features of nuclei were characterized and quantified. The statistical discriminant analysis method was then applied to classify the groups based on the distribution of features. The accuracy of nuclei classification for normal follicular cells is 95.55% and the popular papillary carcinoma can be actually discriminated. From the results of the experiments, we believe that this system has the feasibility to provide the information for assisting clinical diagnosis and study for thyroid disease in the nearly future.
摘要 I
ABSTRACT II
誌 謝 III
表目錄 VII
圖目錄 VIII
第一章 緒論 1
1.1 概論 1
1.2 甲狀腺流行病學與病理學 2
1.3 臨床檢查 6
1.4 研究動機與目的 7
第二章 文獻回顧 10
2.1 基於影像像素分析法則 10
2.2 紋理分析 10
2.3 區別分析與影像分類 11
第三章 研究架構及方法 13
3.1 材料與設備 13
3.1.1 研究材料 13
3.1.2 研究設備 13
3.2 系統架構與流程 14
3.2.1 系統架構 14
3.2.2 系統流程 15
3.2.3 適應性細胞核影像分割法 16
3.3 消除雜訊 19
3.4 影像特徵 20
3.4.1 一階統計參數 21
3.4.2 二階統計參數 24
3.5 統計分析 28
3.5.1 逐步迴歸選取法 28
3.5.2 多變量區別分析 30
第四章 結果與討論 36
4.1 實驗樣本說明 36
4.2 組織影像辨識結果 38
4.3 辨識結果及探討 46
第五章 結論與未來研究方向 50
5.1 結論 50
參考文獻 51
[1]林志聰、吳建宗、黃政仁、梁文維、李建明、陳顯瑩、高丕霖, 組織學, 藝軒圖書出版社, 1991.
[2]張瓊懿, 柳舒祥, 潘弘偉, 周鴻文, 李冬陽, 基本病理學, 藝軒圖書出版社, 2004.
[3]賴宗鼎、黃鎮國, 羅賓氏病理學, 藝軒圖書出版社, 1998.
[4]許朝添, 病理學第二版, 藝軒圖書出版社, 2004.
[5]E. L. Mazzaferri, “An overview of the management of papillary and follicular thyroid carcinoma”, Thyroid , vol. 9, No. 5, pp. 421-427 1999.
[6]A. Belfiore, R. GL. La, P. GA. La, D. Giuffrida, G. Milazzo, L. Lupo, C. Regalbuto, R.Vigneri, “Cancer risk in patients with cold thyroid nodules,” Am J Med., vol. 93, No. 4, pp. 359-62, 1992.
[7]W. Frieauff, F. Pötter-Locher, A. Cordier, W. Suter, “Automatic analysis of the in vitro micronucleus test on V79 cells, Mutation Research/Genetic Toxicology and Environmental Mutagenesis, Vol.413, pp. 57-68(12), 23 Feb., 1998.
[8]A.Benzinou, Y. Hojeij , Y. Sibiril and A.-C. Roudot, “Haematopoietic cell cluster quantification using image analysis”, Biomedical Signal Processing and Control, vol. 1, pp. 282-288, 2006
[9]H. G. Hwang, H. J. Choi, B. D. Kang, H. K. Yoon, H. C. Kim, S. K. Kim, and H. K. Choi “Classification of breast tissue images based on wavelet transform using discriminant analysis, neural network and SVM,” Proceedings of 7th International Workshop on Enterprise networking and Computing in Healthcare Industry, vol. 23-25, pp. 345 - 349, 2005.
[10]Rafael C. Gonzalez and Richard E. Woods, “Digital Image Processing: Second Edition”, Prentice Hall, 2001.
[11]A. P. Dhawan, Medical Image Analysis, Wiley-IEEE Press, NJ, 2003.
[12]R. M. Haralick, K. Shanmugan, and I. Dinstein, “Textural Features for Image Classification”, IEEE Trans on Systems, Man Cyb., vol.SMC-3, no. 6, pp.610-621, 1973.
[13]C. M. Wu and Y. C. Chen, “Statistical Feature Matrix for Texture Analysis,” CVGIP:Graphical Models and Image Processing, vol. 54, no. 5, pp. 407-419, 1992.
[14]C. I. Christodoulou and C. S. Pattichis, “Texture-Based Classification of Atherosclerotic Carotid Plaques”, IEEE Trans. on Medical Image, vol. 22, No. 7, July 2003.
[15]C. M. Wu and Y. C. Chen, “Texture Features for Classification of Ultrasonic Liver Images”, IEEE Trans. Med. Imaging, vol. 11, no. 2, pp. 141 – 152, 1992.
[16]Y. N. Sun, M. H. Horng, X. Z. Lid, and I. Y. Wang, “Ultrasonic image Analysis for Liver Diagnosis”, IEEE EMBS., vol. 15, no. 6, pp. 93-101, 1996.
[17]S. Gr. Mougiakakou, I. Valavanis, K. S. Nikita, A. Nikita, and D. Kelekis, “Characterization of CT Liver Lesions Based on Texture Features and a Multiple Neural Network Classification Scheme,” IEEE EMBS, vol. 2, no. 2, pp. 17-21, 2003.
[18]R.C. Hermida, A. Mojon, F. Aguado, and D.E. Ayala, “Pattern Discrimination Software for Uncertainty Reduction in Neonatal Cardiovascular Risk Assessment,” Proceedings of the Fourth Annual IEEE Symposium, Vol. 12-14, pp 62-69, 1991.
[19]T. Akiba and Y. Kakui, “Design and testing of an underwater microscope and image processing system for the study of zooplankton distribution,” IEEE J. Ocean. Eng., vol. 25, no. 1, pp. 97 – 104, 2000.
[20]H. G. Hwang, H. J. Choi, B. D. Kang, H. K. Yoon, H. C. Kim, S. K. Kim, and H. K. Choi “Classification of breast tissue images based on wavelet transform using discriminant analysis, neural network and SVM,” Proceedings of 7th International Workshop on Enterprise networking and Computing in Healthcare Industry, vol. 23-25, pp. 345 - 349, 2005.
[21]鄧家駒, 多變量分析, 華泰文化事業公司, 2004
[22]陳順宇, 多變量分析, 華泰文化事業公司, 2004
[23]榮泰生, SPSS與研究方法第二版, 五南圖書出版股份有限公司, 2009
[24]A. Brander, P. Viikinkoski, J. Nickels and L. Kivisaari, “Thyroid gland: US screening in a random adult population,” Radiology, vol. 181, pp. 683-687, 1991
[25]面對甲狀腺癌, http://eva123lee.myweb.hinet.net/word/18.htm
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top