|
1. Y. Yajima, Linear Programming Approaches for Multicategory Support Vector Machines. European Journal of Operational Research. 162 (2005), 514–531. 2. JAK Suykens, J. Vandewalle, and B. De. Moor, Optimal Control by Least Squares Support Vector Machines. Neural Networks, 14 (2001) 3. H. Wang, D. Pi, and Y. Sun, Online SVM Regression Algorithm-based Adaptive Inverse Control. Neurocomputing, 70 (2007), 952–959. 4. F. Friedrichs, and C. Igel, Evolutionary Tuning of Multiple SVM Parameters. Neurocomputing, 64 (2005), 107–117. 5. D.H. Shou, and J.H. He, Application of parameter-expanding method to strongly nonlinear oscillators, International Journal of Nonlinear Sciences and Numerical Simulation, 8. 1. (2007), 121-124. 6. Z.M. Odibat, and S. Momani. Application of variational iteration method to nonlinear differential equations of fractional order, International Journal of Nonlinear Sciences and Numerical Simulation, 7. 1. (2006), 27-34. 7. T.H.S. Li, C.L. Kuo, and N.R. Guo, Design of an EP-based fuzzy sliding-mode control for a magnetic ball suspension system, Chaos, Solitons & Fractals, 33. 5. (2007), 1523-1531. 8. F. Manuel, P. Perez, and P.M. Manuel, Chaotic and steady state behaviour of a nonlinear controlled gyro subjected to harmonic disturbances, Chaos, Solitons & Fractals, 33. 2. (2007), 623-641. 9. H.T. Yau, C.L. Kuo, and J.J. Yan. Fuzzy sliding mode control for a class of chaos synchronization with uncertainties, International Journal of Nonlinear Sciences and Numerical Simulation, 7. 3. (2006), 333-338 10. S. J. Cho, and Y. S. Choi, Estimation of ride quality of a passenger car with nonlinear suspension. Int. J. Automotive Technology 8, 1, (2007). 103-109. 11. J. Z. Feng, J. Li, and F. Yu, GA-based PID and fuzzy logic control for active vehicle suspension syetem. Int. J. Automotive Technology 4, 4, (2003). 181-191. 12. J. J. Grefenstette, Optimization of control parameters for genetic algorithms. IEEE Trans. Syst., Man, Cybern., (1986). 122-128. 13. X. Guo, Y. Zhou, and D. Gong, Optimization of fuzzy sets of fuzzy control system based on hierarchical genetic algorithms. Proc. IEEE TENCON’02, (2002). 1463-1466. 14. J. R. Jang, Self-learning fuzzy controllers based on temporal back propagation. IEEE Trans. Neural Networks, 3-5, (1992). 714-123. 15. K. Kropp, and U. G. Baitinger, Optimization of fuzzy logic controller inference rules using a genetic algorithms. EUFIT'93-First Technologies, (1993). 1090-1096. 16. Y.-P. Kuo, and T.-H. S. Li, GA-based fuzzy PI/PD controller for automotive active suspension system. IEEE Trans. Industrial Electronics 46, 6, (1999). 1051-1056. 17. M. Shin, and M. Sunwoo, Optimal period and priority assignment for a networked control system scheduled by a fixed priority scheduling system. Int. J. Automotive Technology 8, 1, (2007). 39-48. 18. V. N. Vapnik, Statistical Learning Theory. Wiley. New York. (1998). 19. V. N. Vapnik, An overview of statistical learning theory. IEEE Trans. Neural Networks, (1999). 88–999. 20. V. N. Vapnik, The Nature of Statistical Learning Theory. Springer. New York. (2000). 21. F. Wang, T. Zhang, L. Yang, and B. Zhuo, Steadystate optimization of an internal combustion engine for hybrid electric vehicles. Int. J. Automotive Technology 8, 3, (2007). 361-373. 22. L. Wu, and H.-L. Chen, Complex stochastic wheelbase preview control and simulation of a semi-active motorcycle suspension based on hierarchical modeling method. Int. J. Automotive Technology 7, 6, (2006). 749-756. 23. I. Youn, and A. Hac, Preview control of active suspension with integral action. Int. J. Automotive Technology 7, 5, (2006). 547-554. 24. F. Yu, J.-Z. Feng, and J. Li, A fuzzy logic controller design for vehicle ABS with a on-line optimized target wheel slip ratio. Int. J. Automotive Technology 3, 4, (2002). 165-170. 25. A. Chaibakhsh, A. Ghaffari, and S.AliA. Moosavian, A simulated model for a once-through boiler by parameter adjustment based on genetic algorithms, Simulation Modelling Practice and Theory 15 (2007) 1029–1051. 26. J.-S. Chiou, and K.-Y. Wang, Application of a hybrid controller to a mobile robot, Simulation Modelling Practice and Theory 16 (2008) 783–795. 27. M. Clerc, The swarm and the queen: towards a deterministic and adaptive particle swarm optimization, in: Proceedings of the ICEC (1999), Washington, DC, (1999), pp. 1951–1957. 28. K. Hirota, Industrial Application of Fuzzy Technology, Springer-Verlag, Berlin,(1992). 29. H.F. Ho, Y.K. Wong, and A.B. Rad, Robust fuzzy tracking control for robotic manipulators, Simulation Modelling Practice and Theory 15 (2007) 801–816. 30. W. Huang, D. Chen, An efficient heuristic algorithm for rectangle-packing problem, Simulation Modelling Practice and Theory 15 (2007) 1356–1365. 31. Y.-T. Juang, Y.-T. Chang, and C.-P. Huang, Design of fuzzy PID controllers using modified triangular membership functions, Information Sciences 178 (2008)1325–1333. 32. J. Kennedy, and R.C. Eberhart, Particle swarm optimization, Proceedings of IEEE International Conference on Neural Networks IV (1995) 1942–1948. 33. B.C. Kuo, Automatic Control System, Prentice-Hall, New York, 1995. 34. Y.-P. Kuo, M.-T. Liu, and J.-S. Chiou, in: Design of an Evolutionary-Based Fuzzy System, Asian Simulation Conference, 2006. 35. K. Ogata, Modern Control Engineering, second ed., Prentice-Hall, India, 1992. 36. S.-K. Oh, and W. Pedrycz, Genetic optimization-driven multi-layer hybrid fuzzy neural networks, Simulation Modelling Practice and Theory 14 (2006) 597–613. 37. S.-K. Oh, W. Pedrycz, and K.-J. Park, Structural developments of fuzzy systems with the aid of information granulation, Simulation Modelling Practice and Theory 15 (2007) 1292–1309. 38. K.-J. Park, W. Pedrycz, and S.-K. Oh, A genetic approach to modeling fuzzy systems based on information granulation and successive generation-based evolution method, Simulation Modelling Practice and Theory 15 (2007) 1128–1145. 39. K.M. Passino, and S. Yurkovich, Fuzzy Control, Addison-Wesley, Reading, MA, 1998. 40. A. Pollard, Process Control, Heinemann Educational Books, London, 1971. 41. D. Puangdownreong, T. Kulworawanichpong, and S. Sujitjorn, Input weighting optimization for PID controllers based on the adaptive tabu search, 2004 IEEE Region 10 Conference D (2004) 451–454. 42. Al-Aomar Raid, Incorporating robustness into genetic algorithm search of stochastic simulation outputs, Simulation Modelling Practice and Theory 14 (2006) 201–223. 43. X.-J. Wu, X.-J. Zhu, G.-Y. Cao, and H.-Y. Tu, Dynamic modeling of SOFC based on a T–S fuzzy model, Simulation Modelling Practice and Theory 16 (2008) 494–504. 44. N. Saad, and V. Kadirkamanathan, A DES approach for the contextual load modelling of supply chain system for instability analysis, Simulation Modelling Practice and Theory 14 (2006) 541–563. 45. E.N. Sanchez, H.M. Becerra, and C.M. Velez, Combining fuzzy, PID and regulation control for an autonomous mini-helicopter, Information Sciences 177 (2007) 1999–2022. 46. F. van den Bergh, and A.P. Engelbrecht, A study of particle swarm optimization particle trajectories, Information Sciences 176 (2006) 937–971. 47. D.W. Van der Merwe, and A.P. Engelbrecht, Data clustering using particle swarm optimization, Proceedings of the 2003 Congress on Evolutionary Computation (2003) 215–220. 48. Y. Yang, and M. Kamel, Clustering ensemble using swarm intelligence, in: Proceedings of the 2003 IEEE Swarm Intelligence Symposium, SIS’03, 2003, pp.65–71. 49. H. Yoshida, K. Kawata, Y. Fukuyama, and Y. Nakanishi, A particle swarm optimization for reactive power and voltage control considering voltage security assessment, IEEE Transactions on Power Systems 15 (2000) 1232–1239. 50. J.-S. Chiou, and M.-T. Liu, Numerical simulation for Fuzzy-PID controllers and helping EP reproduction with PSO hybrid algorithm, Simulation Modelling Practice and Theory 17 (10) (2009) 1555–1565. 51. R.C. Eberhart, and Y. Shi, Comparing inertia weights and constriction factors in particle swarm optimization, in: Proceedings of the IEEE Congress on Evolutionary Computation, San Diego, USA, 2000, pp. 84–88. 52. L.-L. Li, L. Wang, and L.-L. Liu, An effective hybrid PSOSA strategy for optimization and its application to parameter estimation, Applied Mathematics and Computation 179 (1) (2006) 135–146. 53. M. M. Noel and T. C. Jannett, Simulation of a new hybrid particle swarm 93 optimization algorithm, in Proc 36th Southeastern Symp. Syst. Theory, 2004, pp.150–153. 54. C. F. Juang, A hybrid of genetic algorithm and particle swarm optimization for recurrent network design, IEEE System, Man, Cybern: B 34 (2) (2004) 997–1006. 55. T. Huang, and A. S. Mohan, A Hybrid Boundary Condition for Robust Particle Swarm Optimization, IEEE Antennas and Wireless Propagation Letters 4 (2005)112-117. 56. D. Liu, K. C. Tan, C. K. Goh, and W. K. Ho, A Multiobjective Memetic Algorithm Based on Particle Swarm Optimization, IEEE System, Man, Cybern:B 37 (1) 2007 42-50. 57. A. Beghi, M. Liberati, S. Mezzalira, and S. Peron, Grey-box modeling of a motorcycle shock absorber for virtual prototyping applications, Simulation Modelling Practice and Theory 15 (8) (2007) 894–907. 58. R. Bellman, and R. Kalaba, Dynamic programming and modern control theory (New York: Academic Press Inc., 1965). 59. İkbal Eski, and Şahin Yıldırım, Vibration control of vehicle active suspension system using a new robust neural network control system, Simulation Modelling Practice and Theory 17 (5) (2009) 778–793. 60. K. Gulez, and R. Guclu, CBA-neural network control of a non-linear full vehicle model, Simulation Modelling Practice and Theory 16 (9) (2008) 1163–1176. 61. J. Cao, H. Liu, P. Li, and D. J. Brown, State of the Art in Vehicle Active Suspension Adaptive Control Systems Based on Intelligent Methodologies, IEEE Intelligent Transportation Systems 9 (3) (2008) 392-405. 62. D. Carlos, and Paternina-Arboleda, Tapas K. Das, A multi-agent reinforcement learning approach to obtaining dynamic control policies for stochastic lot scheduling problem, Simulation Modelling Practice and Theory 13 (5) (2005)389–406. 63. J. Z. Feng, J. Li and F. Yu, GA-based PID and fuzzy logic control for active vehicle suspension syetem. International Journal of Automotive Technology 4 (4) (2003) 181-191.64. I. Youn, and A. Hac, Preview control of active suspension with integral action.International Journal of Automotive Technology 7 (5) (2006) 547-554. 65. J.-S. Chiou, and M.-T. Liu, Using Fuzzy Logic Controller and Evolutionary Genetic Algorithm for Automotive Active Suspension System, International Journal of Automotive Technology 10 (6) (2009) 703-710.
|