跳到主要內容

臺灣博碩士論文加值系統

(44.192.79.149) 您好!臺灣時間:2023/06/03 00:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:武功英
研究生(外文):Vo Cong Anh
論文名稱:燃氣準備對均質混合壓縮點火 (HCCI) 之汽油引擎燃燒的影響研究
論文名稱(外文):Study of the Effect of Mixture Preparation on the Combustion of Gasoline HCCI Engine
指導教授:張崴縉
指導教授(外文):Wei-Chin Chang
學位類別:碩士
校院名稱:南台科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:100
畢業學年度:99
語文別:中文
論文頁數:67
中文關鍵詞:內燃機均質壓燃燃燒熱力學分析製漿EGR率
外文關鍵詞:internal combustion engine, HCCI combustion, thermodynamic analysis, mixture preparation, EGR ratio
相關次數:
  • 被引用被引用:0
  • 點閱點閱:999
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
均質填充壓縮點燃(HCCI)燃燒已被視為一種很有前景的技術,可讓往復式發動機具有較高的熱效率和低環境影響。HCCI燃燒發動機的特點是使用預混氣體進行階段填充,不節流操作,高壓縮比和混合自動點火。在這篇論文中,真正的實驗測試被用來研究在多個控制參數下,混合氣之準備對汽油HCCI燃燒的影響。

為了進行實驗,一個特別設計的進氣系統被安裝在小型摩托車單缸引擎上,以便分析吸入的空氣溫度、空氣燃料比和廢氣再循環成分對燃燒和廢氣特性的影響。該引擎使用山葉XC125M引擎並稍加改造,氣缸上蓋原本設計用於火花點火、埠式燃油噴射式引擎,藉由使用一較大的活塞和缸套襯墊連結於缸體上,使其壓縮比由10.3提高到14.3。隨著該進氣系統的設置,可達成不同組合的混合氣準備。

實驗結果指出,對HCCI燃燒特性最有效的影響因素是吸入的空氣溫度、空氣燃料比和廢氣再循環比率。當 EGR率和空氣燃料比增加,因為壓力較低,燃燒亦持續減低。隨著增加空氣燃料和EGR率降低,其IMEP值也呈現降低的趨勢。另外,增加空氣燃料和EGR率也增加了HC和CO排放,而氮氧化物排放則減少。當入口空氣溫度增加,儘管汽缸壓力逐漸升高,引擎的IMEP值卻較低。此外,進氣溫度的增加會使氮氧化物的排放量顯著增加,尤其是在高溫度。進氣溫度,空氣燃料比和EGR率對 HCCI燃燒都是相互交互影響。
Homogenous Charge Compression Ignition (HCCI) combustion has been regarded as a promising technology to realize a reciprocating engine with high thermal efficiency and low environmental impact. HCCI combustion engines are characterized by use of a premixed gas phase charge, unthrottled operation, high compression ratio, and mixture auto-ignition. In this thesis, a practical experiment is used to study the effect of mixture preparation on gasoline HCCI combustion under more controlled parameters.

To carry out the experiment, a specific intake system has been designed and installed in a small single cylinder engine to analyze the effects of intake air temperature, air fuel ratio and EGR composition on characteristic combustion and emission. The engine used to carry out this experiment is modified from a Yamaha XC-125M engine. The cylinder head is originally designed for a spark ignited, port fuel injected engine. The compression ratio is increased from 10.3 to 14.3 by using a larger piston and a cylinder liner adaptor bolted onto the block. With the intake system setup, different compositions of mixture preparation are allowed to be established.

The experimental results indicate that, the most effective factors to HCCI combustion characteristics are the intake air temperature, air fuel ratio and EGR ratio. When EGR ratio and air fuel ratio increase, the burn duration decreases due to the lower peak pressure. The value of IMEP reduces slightly along with the increase of air fuel and EGR ratios. In addition, the increases of air fuel and EGR ratios also increase the HC and CO emissions while NOx emission is reduced. As intake air temperature increases, the engine has a lower IMEP value although the cylinder pressure is increased. Besides, the increase of intake air temperature makes the NOx emission increases significantly, especially at high temperature. The effects of intake air temperature, air fuel ratio and EGR ratio on HCCI combustion are all interconnected.
TABLE OF CONTENTS
ABSTRACT i
ACKNOWLEDGEMENTS iii
TABLE OF CONTENTS iv
ABBREVIATIONS vii
LIST OF FIGURES viii
LIST OF TABLES x
CHAPTER 1 - INTRODUCTION 1
1.1 Background Research 1
1.2 Motivation 3
1.3 Objectives 3
1.4 Outline of Thesis 4
CHAPTER 2 - LITERATURE REVIEW 5
2.1 Literature Overview of HCCI Combustion 5
2.2 Mixture Preparation for HCCI Combustion 8
2.3 Challenges of HCCI Combustion 9
CHAPTER 3 - EXPERIMENT SETUP AND PROCEDURE 12
3.1 Engine Experiment System 12
3.1.1 Engine Characteristics 12
3.1.2 Torque Transducer 13
3.1.3 Electromagnetic Clutch 14
3.1.4 Intake Air Heating 15
3.1.5 Exhaust Gas Recirculation 18
3.1.6 Premixed Fuel System 19
3.1.7 Fuel Injector Control 19
3.2 Data Acquisition and Analysis 21
3.2.1 Crankshaft Encoder 21
3.2.2 Air Temperature Measurement 21
3.2.3 In-cylinder Pressure Measurement 22
3.2.4 Labview Data Acquisition 23
3.3 Experiment Procedure 26
3.3.1 Experiment Preparation 26
3.3.1.1 Initial Engine Testing 26
3.3.1.2 EGR Ratio Calculation 27
3.3.2 Experimental Procedure 27
CHAPTER 4 - EXPERIMENT RESULTS AND DISCUSSION 30
4.1 Combustion Parametric Calculation 30
4.1.1 Indicated Mean Effective Pressure Calculation 30
4.1.2 Start of Combustion (SOC) and Burn Duration Calculation 30
4.2 Intake Air Temperature Effectives 33
4.2.1 Combustion Analysis 33
4.2.2 Emission Analysis 38
4.2.2.1 HC and CO Emissions 38
4.2.2.2 NOx Emissions 39
4.3 Air Fuel Ratio Effectives 40
4.3.1 Combustion analysis 40
4.3.2 Emission Analysis 45
4.3.2.1 HC and CO Emission 45
4.3.2.2 NOx Emissions 46
4.4 EGR Ratio Effectives 47
4.4.1 Combustion Analysis 48
4.4.2 Emission Analysis 52
4.4.2.1 HC and CO Emissions 52
4.4.2.2 NOx Emissions 53
CHAPTER 5 - CONCLUSION AND FUTURE RESEARCH 55
5.1 Conclusion 55
5.2 Recommendations for Future Research 57
REFERENCES 59
APPENDIX A 63
APPENDIX B 66
APPENDIX C 67
1.Thring, R.H., "Homogeneous Charge Compression Ignition (HCCI) Engines", SAE 892068, 1989.
2.Aroonsrisopon, T., Foster, D., Morikawa, T., Iida, M., "Comparison of HCCI Operating Ranges for Combinations of Intake Temperature, Engine Speed, and Fuel Composition", SAE 2002-01-1924, 2002
3.Persson, H., Agrell, M., Olsson, J., Johansson, B., Strom, H., "The effect of intake temperature on HCCI operation using negative valve overlap", SAE 2004-01-0944, 2004.
4.Sjoberg, M., Dec, J., "An investigation of the relationship between measured intake temperature, BDC temperature , and combustion phasing for premixed and DI HCCI engines", SAE 2004-01-1900, 2004.
5.Ishibashi, Y., Asai, M., "Improving the Exhaust Emissions of Two-Stroke Engines by Applying the Activated Radical Combustion", SAE 960742, 1996
6.“Homogeneous Charge Compression Ignition (HCCI) Technology”, A Report to the U.S. Congress, April, 2001.
7.Najt, P.M. and Foster, D.E., "Compression Ignition Homogeneous Charge Combustion", SAE Paper 830264, 1983.
8.Amano, T., Morimoto, S. and Kawabata, Y., "Modeling of the Effect of Air/Fuel Ratio and Temperature Distribution on HCCI Engines", SAE Paper 2001-01-1024, 2001.
9.Noda, T. and Foster, D.E., "A Numerical Study to Control Combustion Duration of Hydrogen-Fueled HCCI by Using Multi-Zone Chemical Kinetics Simulation", SAE Paper 2001-01-0250, 2001.
10.Christensen, M., Johansson, B. and Einewall, P., "Homogeneous Charge CompressionIgnition (HCCI) using Isooctane, Ethanol and Natural Gas - A Comparison with Spark Ignition", SAE Paper 972874, 1997.
11.Kakuho, A., Nagamine, M., Amenomori, Y., Urushihara, T., Itoh, T., “In-Cylinder Temperature Distribution Measurements and Its Application to HCCI Combustion”, SAE Paper 2006-01-1202, 2006.
12.Zuo-qin Qian and Xing-Cai Lü, “Characteristics of HCCI engine operation for additives, EGR, and intake charge temperature while using iso-octane as a fuel”, Journal of Zhejiang University - Science A, Volume 7, 2006.
13.Salvador M. Aceves, Daniel L. Flowers, “HCCI Combustion: Analysis and Experiments”, SAE Paper 2001-01-2077, 2001.
14.Amano, T., Morimoto, S., Kawabata, Y., “Modeling of the Effect of Air/Fuel Ratio and Temperature Distribution on HCCI Engines”, SAE Paper 2001-01-1024, 2001.
15.Tominaga, R., Morimoto, S., Kawabata, Y., Matsuo, S., Amano, T., “Effects of Heterogeneous EGR on the Natural Gas Fueled HCCI Engine Using Experiments, CFD and Detailed Kinetics”, SAE Paper 2004-01-0945, 2004.
16.Hiraya, K., Hasegawa, K., Urushihara, T., Liyama, A., Itoh, T., “A Study on Gasoline Fueled Compression Ignition Engine ~ A Trial of Operation Region Expansion ~”, SAE Paper 2002-01-0416, 2002.
17.Cairns, A., Blaxill, H., “The Effects of Combined Internal and External Exhaust Gas Recirculation on Gasoline Controlled Auto-Ignition”, SAE Paper 2005-01-0133, 2005.
18.Stanglmaier RH, Li J, Matthews RD, “The effect of in-cylinder wall wetting location on the HC emissions fromSI engines”, SAE paper 1999;01-0502; 1999.
19.Harada A, Shimazaki N, Sator, S, Miyamoto T, Akagawa H, Tsujimura K, “The effects of mixture formation on premixed lean diesel combustion”, SAE paper 980533; 1998.
20.TP-AB/CB Torque Transducers – Instruction Manual, Kyowa Electronics Instruments Co., LTD.
21.http://www.ogura-clutch.com/products/industrial/howtheywork/electromagnetic-clutch.html
22.Paul Mills, “Smart thermo processing: Hot air in three dimensions”, EIT Inc.
23.Zhao, H. and Ladommatos, N., “Engine Combustion Instrumentation and Diagnostics”, pp.73-74, SAE international, ISBN 0-7680-0665-1, 2001.
24.Randolph, A. L., “Cylinder-Pressure-Based Combustion Analysis in Race Engines,” SAE Paper 1994-94-2487, 1994.
25.Randolph, A. L., “Methods of Processing Cylinder-Pressure Transducer Signals to Maximize Data Accuracy”, SAE Paper 1990-90-0170, 1990.
26.Chen, W. and Huang, Z., “A fundamental study on the control of the HCCI combustion and emissions by fuel design concept combined with controllable EGR. Part 1. The basic characteristics of HCCI combustion”, 2005. 84: p. 1074-1083.
27.CPC Corporation, Taiwan (http://www.cpc.com.tw)
28.Wallington, T. J. and Kaiser, E. W., “Automotive fuels and internal combustion engines: a chemical perspective”, Chemical Society Reviews, 35, 335 - 347, 2006.
29.Qi D H, Zhang Ch H and Bian Y Zh, “Properties, performance, and emissions of methanol-gasoline blends in a spark ignition engine”, Journal of Automobile Engineering, Vol. 219, 405 – 412, 2005.
30.“Toxicological profiler for gasoline”, U.S. Department of health and human services (Public health service), June, 1995.
31.Yacoub Y, Bata R and Gautam M, “The performance and emission characteristics of C1–C5 alcohol–gasoline blends with matched oxygen content in a single-cylinder spark ignition engine”, Journal of Power and Energy, Vol. 212, 363-379, 1998.
32.Heywood, J.B., “Internal Combustion Engine Fundamentals”, First Edition, McGraw- Hill, New York, 1988.
33.Selamet, A., Rupai, S., and He, Y., “An experimental study on the effect of intake primary runner blockages on combustion and emissions in SI engines under part-load conditions”, SAE Paper 2004-01-2973, 2004.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top