跳到主要內容

臺灣博碩士論文加值系統

(44.220.44.148) 您好!臺灣時間:2024/06/18 15:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:徐士凱
研究生(外文):Shih-Kai Hsu
論文名稱:利用陽極氧化鋁模板輔助水熱法生成一維硫化銅奈米線陣列
論文名稱(外文):One-dimensional copper sulfide nanowires growth by hydrothermal synthesis assisted anode aluminum oxide template
指導教授:王聖璋
指導教授(外文):Sheng-Chang Wang
學位類別:碩士
校院名稱:南台科技大學
系所名稱:奈米科技研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:100
畢業學年度:99
語文別:中文
論文頁數:70
中文關鍵詞:多孔性陽極氧化鋁模板硫化銅一維奈米線水熱法
外文關鍵詞:PAMCuSOne-dimensional NanowiresHydrothermal
相關次數:
  • 被引用被引用:0
  • 點閱點閱:251
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
硫化銅(CuS)是一種Wurzite結構的p型半導體,其能帶隙約為2eV,並在溫度1.6K時換轉變為超導體材料。硫化銅在許多的領域有潛在應用,例如在p型半導體太陽能電池裝置、室溫氨氣傳感器和鋰離子電池陰極材料等。
本論文主要是以水熱法結合陽極氧化鋁模板(AAO)輔助合成硫化銅奈米線陣列。實驗分為三個部分,首先討論使用草酸製備陽極氧化鋁模板,由實驗結果顯示,孔洞的直徑會隨著電壓升高而變大,但孔洞間距也會增大,使相對面積下的孔洞數量會比低電壓的孔洞數量少。陽極處理的時間越長,模板的氧化鋁層會越厚,但會使孔洞間距增大,進而使孔洞直徑縮小。而阻障層移除的時間越長則會使第二次陽極處理的孔洞增大,並縮小孔洞間距。藉由上面三個變因參數控制,製備出所需尺寸之AAO。
第二部份探討直接以水熱法合成硫化銅的奈米結構,結果顯示,在沒有陽極氧化鋁模板孔洞的侷限之下,硫化銅的奈米結構有花狀和鍊狀的結構產生。XRD的結果顯示以濃度0.01M之含水氯化銅及含水硫代硫酸鈉能成功以水熱法合成出硫化銅奈米晶體。接著第三部分討論於陽極氧化鋁模板中水熱沉積硫化銅奈米線陣列,結果顯示,水熱法的溫度及模板是影響硫化銅奈米線陣列生長的主要因素。合成出來的硫化銅奈米線由於生長在AAO的孔洞中,所以直徑約為100 nm。
由XRD及TEM的分析結果可以看出,硫化銅奈米線陣列的結晶相會隨著溫度升高而改變,但其組成成分還是為硫化銅,所以本實驗成功使用陽極氧化鋁模板輔助水熱法合成硫化銅奈米線陣列。適合做為光電及太陽能電池材料之應用。
Copper sulfides, CuS is a p-type semiconductor, which exhibits wurzite structure and energy gap of 2 eV. Under the temperature of 1.6K, CuS will transform into a superconductor. Copper sulfide has potential applications in numerous fields, such as p-type semiconductors in solar cell devices, room-temperature ammonia gas seneor, cathode material for lithium ion batteries, etc.
In this study, copper sulphide nanowires arrays were synthesized using hydrothermal method assisted with anodic aluminum oxide template of the thesis can divide into three parts. In the first part, we prepared anodic aluminum oxide template using solution of oxalic acid. The results shown that the diameter of pore size increased as the voltage increases, and the spacing of the pore increased. , The pore density prepared in higher voltage is larger than that of low voltage. When the anodization time increased, the thickness of alumina layer and the spacing of the pore are increased, but the pore size becomes smaller. If the time of barrier layer remove is longer, it will make pore size increases in the second anodizing step, and reducing the distance between pores and pores. By the above three parameter control, preparation of the required size is of the AAO template.
In the second part, we synthesized the copper sulfide nanostructures by hydrothermal method without assisted of AAO template. Synthesis of The results shown that the copper sulfide nanostructures is flower-like or nanorod structure of the crystals. The XRD shows that hydrothermal method can be successfully synthesized copper sulfide nano-crystalline, by the concentration 0.01M CuCl2•2H2O and Na2S2O3•5H2O mixed solution. In the third part, the anodic alumina template was used in hydrothermal to synthesize the copper sulfide nanowire arrays. The copper sulfide nanowires are growth in the AAO pores, the diameter is about 100 nm.
Using XRD and TEM analysis, the results shows that the crystallinity of the copper sulfide nanowires increases as the reaction temperature increases. The optical properties of the CuS nanowire arrays are characterized. In summary, we success to synthesize the copper sulphide nanowire arrays in various pore size via hydrothermal process assisted by anodic aluminum oxide template. Synthesis of the application of the materials for photovoltaic and solar cellswere evaluated.
目錄
摘要................................................................................................................................I
英文摘要.......................................................................................................................II
致謝............................................................................................................................. III
目錄.............................................................................................................................. V
表目錄........................................................................................................................VII
圖目錄.......................................................................................................................VIII
第一章 緒論..................................................................................................................1
1-1前言......................................................................................................................1
1-2研究動機..............................................................................................................2
第二章 文獻回顧......................................................................................................…4
2-1多孔性陽極氧化鋁模板…..................................................................................4
2-1-1多孔性陽極氧化鋁模板成長機制…...........................................................4
2-1-2多孔性陽極氧化鋁模板型態…...............................................................…6
2-1-3電壓與電流大小對於PAM的影響........................................................…9
2-1-4一次陽極氧化處理與二次陽極氧化處理的關係.................................…11
2-1硫化銅簡介…....................................................................................................14
2-2-1硫化銅結構….............................................................................................14
2-2-2硫化銅的合成方式….................................................................................16
2-3水熱法簡介…....................................................................................................20
2-3-1高壓反應釜的反應容積與溫度之關係….................................................20
2-3-2水熱法合成硫化銅….................................................................................22
2-3-3水熱法之優點.........................................................................................…26
第三章 實驗方法與步驟........................................................................................…27
3-1實驗藥品與裝置............................................................................................…27
3-1-1實驗藥品.................................................................................................…27
3-1-2實驗裝置….................................................................................................28
3-1-3實驗儀器.................................................................................................…28
3-2實驗方法........................................................................................................…29
3-2-1鋁基材前處理.........................................................................................…30
3-2-2陽極化處理.............................................................................................…31
3-2-3鋁層移除與開、擴孔…...............................................................................32
3-2-4水熱法試驗.............................................................................................…32
3-3微結構檢測與性質分析…................................................................................32
3-3-1 X-光繞射分析儀…....................................................................................33
3-3-2掃描式電子顯微鏡.................................................................................…33
3-3-3穿透式電子顯微鏡.................................................................................…34
3-3-4紫外光-可見光光譜儀…............................................................................34
第四章 結果與討論…................................................................................................36
4-1多孔性陽極氧化鋁模板製備…........................................................................36
4-1-1一次陽極處理與二次陽極處理的關係….................................................36
4-1-2陽極處理電壓高低對於多孔性陽極氧化鋁模板的影響….....................40
4-2水熱法合成硫化銅…........................................................................................44
4-2-1水熱法合成硫化銅粉末….........................................................................44
4-2-2硫化銅粉末之光學特性探討….................................................................52
4-3水熱法搭配PAM合成硫化銅奈米線陣列…...................................................55
4-3-1硫化銅奈米線陣列之光學特性探討….....................................................64
第五章 結論與未來工作…........................................................................................66
參考文獻…..................................................................................................................67


表目錄
表4-1一次陽極處理和二次陽極處理試片實驗參數................................................37
表4-2第一次酸洗時間對陽極氧化鋁模板孔洞影響實驗參數圖…........................39
表4-3不同電壓下陽極氧化鋁模板實驗之參數設定............................................…41





















圖目錄
圖2-1陽極氧化鋁模板孔洞生成示意圖..................................................................…5
圖2-2多孔性陽極氧化鋁模板之模型…......................................................................7
圖2-3不同的酸性電解液之陽極氧化電壓(V)與自組裝孔洞間距(Dint)之關係圖....8
圖2-4曲率半徑與電場分佈的關係…........................................................................10
圖2-5陽極氧化鋁模板成長時間與電流和電壓變化的關係圖…............................10
圖2-6進行兩次陽極處理並做酸洗過程圖................................................................12
圖2-7磷酸擴孔所能達到最大的孔洞範圍示意圖…................................................13
圖2-8垂直於C軸之CuS的結構圖…......................................................................15
圖2-9各種合成奈米晶體方法之晶體圖…................................................................18
圖2-10各種合成奈米結構方法之晶體圖…..............................................................19
圖2-11水熱法壓力釜中溶液反應溫度與反應體積之壓力關係圖…......................21
圖2-12水熱法壓力釜中溶液不同的填滿體積與溫度關係…..................................22
圖2-13水熱法未加入界面活性劑所合成出的硫化銅奈米粒子之SEM圖............23
圖2-14使用水熱法合成六角狀單一分佈的奈米片結構之分析圖…......................24
圖2-15水熱法所合成出的硫化銅奈米線結構.....….................................................25
圖3-1陽極氧化鋁模板製備流程圖…........................................................................29
圖3-2水熱法試驗流程圖…........................................................................................30
圖3-3陽極氧化處理裝置示意圖…............................................................................31
圖3-4微結構及光學性質之分析及鑑定流程圖…....................................................33
圖4-1只做一次陽極處理和經過二次陽極處理試片之SEM上視圖…..................37
圖4-2酸洗時間不同試片之SEM圖…......................................................................39
圖4-3不同電壓下的PAM之SEM圖….....................................................................42
圖4-4為經由影像分析軟體計算之後的孔洞間距圖…............................................43
圖4-5水熱法粉末之XRD成份分析圖…..................................................................47
圖4-6為不同溫度之水熱法粉末SEM圖…..............................................................48
圖4-7水熱法70℃的CuS粉末之TEM圖…..............................................................49
圖4-8水熱法100℃的CuS粉末之TEM圖…............................................................49
圖4-9水熱法130℃的CuS粉末之TEM圖…............................................................49
圖4-10水熱法160℃的CuS粉末之TEM圖…..........................................................50
圖4-11水熱法190℃的CuS粉末之TEM圖…..........................................................51
圖4-12水熱法各溫度粉末之UV-vis吸收光譜圖….................................................54
圖4-13不同水熱法溫度之PAM表面觀察…............................................................58
圖4-14具有硫化銅奈米線的PAM鹼洗10分鐘之XRD圖…..................................59
圖4-15水熱法溫度70~100℃搭配PAM合成之硫化銅奈米線SEM圖…...............60
圖4-16為水熱法70℃搭配PAM生成硫化銅奈米線之TEM圖…..........................61
圖4-17為水熱法100℃搭配PAM生成硫化銅奈米線之TEM圖........................…61
圖4-18為水熱法130℃搭配PAM生成硫化銅奈米線之TEM圖........................…62
圖4-19為水熱法160℃搭配PAM生成硫化銅奈米線之TEM圖…........................63
圖4-20為水熱法190℃搭配PAM生成硫化銅奈米線之TEM圖........................…63
圖4-21硫化銅奈米線陣列UV光譜圖...................................................................…65




[1]J. Hu, T. W. Odom, and C. M. Lieber, Acc. Chem. Res. 32, (1999), 435.
[2]Y. Wu, H. Yan, and P. Yang, Chem. Eur. J. 8, (2002), 1260.
[3]B.D. Terris, T. Thomson, J. Phys. D: Appl. Phys. 38, (2005), R199.
[4]P.V. Braun, P. Wiltzius, Natur. 402, (1999), 603.
[5]G. Zhang, J. Chen, J. Electrochem. Soc. 152, (2005), A2069.
[6]Y.A. Vlasov, X.Z. Bo, J.C. Sturm, D.J. Norris, Nature. 414, (2001), 289.
[7]T.M. Chen, F.M. Pan, J.I. Hung, L. Chang, S.C. Wu and C.-F. Chen, J. Electrochem. Soc. 154 (2007), p. D215.
[8]Huczko, Appl. Phys. A 70, (2000), 365.
[9]C.R. Martin, Chem. Mater. 8, (1996), 1739.
[10]G. F. Thompson, R. C. Furneaux, G. C. Wood, J. A. Richardson, and J. S. Goode, Nature. 30, (1978), 433.
[11]G. E. Thompson, and G. C. Wood, Nature. 19, (1981), 230.
[12]S. Wernick, R. Pinner, and P. G. Sheasby, UK, Vol. 1, Chapter6, (1987), p.289.
[13]H. Masuda, and K. Fukuda, Science. 9, (1995), 1466.
[14]R. Inguanta, C. Sunseri, S. Piazza, Electrochem. Solid State Lett. 10, (2007), K63.
[15]R. Inguanta, S. Piazza, C. Sunseri, Nanotechnology. 18, (2007), 485605.
[16]T. Kondo, M. Tanji, K. Nishio, H. Masuda, Electrochem. Solid State Lett. 9, (2006), C189.
[17]H. Chik, J. Liang, S. G. Cloutier, N. Kouklin, and J. M. Xu, Appl. Phys. Lett. 84, (2004), 26.
[18]張育瑄,「溶液法成長硫化銅薄膜之氨氣感測性質」,2011.
[19]Jordi Cabana , Laure Monconduit , Dominique Larcher , and M. Rosa Palacín, Adv. Mater. 22, (2010), E170–E192.
[20]Quintela M A, Rivas J, Colloid Interfac Sci. 158, (1993), 446-451.
[21]廖雪紅,鄭堅,「微波合成半導體CuS奈米粒子和Bi2S3奈米棒」,黃岡師範學院學報,17,(2002),275-278.
[22]呂維中,劉波等。「奈米硫化銅的超聲波化學合成及其特性」,電子元件與材料, 23, (2004), 4-5.
[23]Tanori J, Duxin N, etc. Colloid Polym Sci. 273, (1995), 886-892.
[24]Z. X. Su, G. Hahner, W. Z. Zhou, Jourmal of Materials Chemistry. 18, (2008), 5787-5795.
[25]V. P. Parkhutik, Journal of Physics D: Applied Physics. 25, (1992), 1258-1263.
[26]J. P. O. Sullivan, Proceedings: Biological Sciences. 317, (1970), 511-543.
[27]F. Keller, M. S. Hunter, and D. L. Robinson, J. Electrochem. Soc. Volume 100, Issue 9, (1953), 411-419.
[28]D. Almawlawi, K. A. Bosnick, A.Osika, M. Moskovits, Advanced Materials. 12 , (2000), 1252-1257.
[29]H. Masuda, F. Hasegwa, S. Ono, Journal of The Electrochemical Society. 144, (1997), L127-L130.
[30]W. Lee, R. Ji, U. Gosele, K. Nielsch, Nature Materials. 5, (2006), 741-747.
[31]H. Masuda, K. Yada, A. Osaka, Japanese Journal of Applied Physics. 37, (1998), L1340-L1342.
[32]H. Masuda, M. Sato, Jpn. J. Appl. Phys. 35, (1996), 126.
[33]Keitaro Tezuka , William C. Sheets, Ryoko Kurihara, Yue Jin Shan, Hideo Imoto, Tobin J. Marks, Kenneth R. Poeppelmeier, Solid State Sciences. 9, (2007), 95-99.
[34]Brelle, M. C.; Torres-Martinez, C. L.; McNulty, J. C.; Mehra, R. K.; Zhang, J. Z. Pure Appl. Chem. 72, (2000), 101.
[35]Zhang, J. Z. J. Phys. Chem B. 104, 2000, 7239.
[36]W. Buckel, R. Hilsch, Z. Phys. 128, (1950), 324-346.
[37]H.T. Evans Jr., J.A. Konnert, Am. Mineral. 61, (1976), 996-1000.
[38]Yumashev, K. V. Prokoshin, P. V. Malyarevich, A. M. Mikhailov, V. P. Artemyev, M. V. Gurin, V. S. Appl. Phys. B: Lasers Optics. 64, (1997), 73.
[39]Artemyev, M. V. Gurin, V. S. Yumashev, K. V. Prokoshin, P. V. Maljarevich, A. M. J. Appl. Phys. 80, (1996), 7028.
[40]Silvester, E. J. Grieser, F. Sexton, B. A. Healy, T. W. Langmuir. 7, (1991), 2917.
[41]Peiris, S. M. Sweeney, J. S.; Campbell, A. J. Heinz, D. L. J. Chem. Phys. 104, (1996), 11.
[42]Wang, Q. Li, J. X. Li, G. D. Cao, X. J. Wang, K. J. Chen, J. S. J. Cryst. Growth. 299, (2007), 386.
[43]Erokhina, S. Erokhin, V. Nicolini, C. Sbrana, F. Ricci, D. di Zitti, E. Langmuir. 19, (2003), 766.
[44]Mane, R. S. Lokhande, C. D. Mater. Chem. Phys. 65, (2000), 1.
[45]Wan, Y. Wu, C. Min, Y. Yu, S. H. Langmuir. 23, (2007), 8526.
[46]Chien Wu, Jen-Bin Shi, Chih-Jung Chen, Yu-Cheng Chen, Ya-Ting Lin, Po-Feng Wu, Sung-Yen Wei, Materials Letters. 62, (2008), 1074–1077.
[47]Poulomi Roy and Suneel K. Srivastava, CRYSTAL GROWTH & DESIGN. VOL.6, NO.8, (2006), 1921-1926.
[48]Zhenyu Yao, Xi Zhu, Changzheng Wu, Xuanjun Zhang, and Yi Xie, CRYSTAL GROWTH & DESIGN. VOL.7, NO.7, (2007), 1256-1261.
[49]X. Chen, Z. Wang, X. Wang, R. Zhang, X. Liu, W. Lin, Y. Qian, J. Cryst. Growth. 263, (2004), 570-574.
[50]王文忠、何清、庄燕,“表面活性劑輔助低溫固相合成CuS奈米棒”,化工新型材料,Vol. 35. No. 11. (2007), 29.
[51]Hong-Ming Lin, 奈米材料合成技術, Department of Materials Engineering Tatung University.
[52]R. I. Walton. Chemical Society Reviews, 31, (2002), p230-238.
[53]A. Rabenau, Angewandte Chemie: International Editionin English. vol.24, (1985), pp.1026-1040.
[54]Limei Chu, Baibin Zhou, Hongchen Mu, Yuzeng Sun, Ping Xu , Journal of Crystal Growth. 310, (2008), 5437-5440.
[55]Jie Zhang, Zhikun Zhang, Science Direct, Materials Letters. 62, (2008), 2279-2281,.
[56]P.K. Nair, V.M. Garcia, A.M. Ferndndez, H.S. Ruiz, M.T.S. Nair, J. Phys. D. Appl. Phys. 24, (1991), 441–449.
[57]M.T.S. Nair, P.K. Nair, Semicond. Sci. Technol. 4 , (1989), 191–199.
[58]Li-Feng Liu , Wei-Ya Zhou , Si-Shen Xie , Ole Albrecht , Kornelius Nielsch, Chemical Physics Letters. 466, (2008), 165.
[59]Silvester, E. J. Grieser, F. Sexton, B. A. Healy, T. W. Langmuir. 7, (1991), 2917.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top