|
1.de Oliveira AC, Damasceno QS: Surfaces of the hospital environment as possible deposits of resistant bacteria: a review. Rev Esc Enferm USP 2010, 44(4):1118-1123. 2.Jenssen H, Hamill P, Hancock RE: Peptide antimicrobial agents. Clin Microbiol Rev 2006, 19(3):491-511. 3.Dathe M, Wieprecht T: Structural features of helical antimicrobial peptides: their potential to modulate activity on model membranes and biological cells. Biochim Biophys Acta 1999, 1462(1-2):71-87. 4.Sitaram N, Nagaraj R: Interaction of antimicrobial peptides with biological and model membranes: structural and charge requirements for activity. Biochim Biophys Acta 1999, 1462(1-2):29-54. 5.Tossi A, Sandri L, Giangaspero A: Amphipathic, alpha-helical antimicrobial peptides. Biopolymers 2000, 55(1):4-30. 6.Zelezetsky I, Tossi A: Alpha-helical antimicrobial peptides—Using a sequence template to guide structure–activity relationship studies. Biochim Biophys Acta - Biomembranes 2006, 1758(9):1436-1449. 7.Dathe M, Schumann M, Wieprecht T, Winkler A, Beyermann M, Krause E, Matsuzaki K, Murase O, Bienert M: Peptide helicity and membrane surface charge modulate the balance of electrostatic and hydrophobic interactions with lipid bilayers and biological membranes. Biochemistry 1996, 35(38):12612-12622. 8.Kohanski MA, Dwyer DJ, Collins JJ: How antibiotics kill bacteria: from targets to networks. Nat Rev Microbiol 2010, 8(6):423-435. 9.Ding JL, Li P, Ho B: The Sushi peptides: structural characterization and mode of action against Gram-negative bacteria. Cell Mol Life Sci 2008, 65(7-8):1202-1219. 10.Frecer V, Ho B, Ding JL: Interpretation of biological activity data of bacterial endotoxins by simple molecular models of mechanism of action. Eur J Biochem 2000, 267(3):837-852. 11.Li P: Perturbation of Lipopolysaccharide (LPS) Micelles by Sushi 3 (S3) Antimicrobial Peptide: The Importance of an Intermolecular Disulfide Bonnd in S3 Dimer for Binding, Disruption, and Neutralization of LPS. J Biol Chem 2004, 279(48):50150-50156. 12.Li P, Sun M, Wohland T, Ho B, Ding JL: The molecular mechanism of interaction between sushi peptide and Pseudomonas endotoxin. Cell Mol Immunol 2006, 3(1):21-28. 13.Li P, Sun M, Ho B, Ding JL: The specificity of Sushi peptides for endotoxin and anionic phospholipids: potential application of POPG as an adjuvant for anti-LPS strategies. Biochem Soc Trans 2006, 34(Pt 2):270-272. 14.Pankey GA, Sabath LD: Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of Gram-positive bacterial infections. Clin Infect Dis 2004, 38(6):864-870. 15.Walsh C: Molecular mechanisms that confer antibacterial drug resistance. Nature 2000, 406(6797):775-781. 16.Kohanski MA, Dwyer DJ, Hayete B, Lawrence CA, Collins JJ: A Common Mechanism of Cellular Death Induced by Bactericidal Antibiotics. Cell 2007, 130(5):797-810. 17.Cheng C-H: Structural and functional analysis on engineered Sushi peptides: Master Thesis, Institute of Medical Sciences, Tzu Chi university, Taiwan Hualien; 2007. 18.Levin JM: Exploring the limits of nearest neighbour secondary structure prediction. Protein Eng 1997, 10(7):771-776. 19.Geourjon C, Deleage G: SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci 1995, 11(6):681-684. 20.Bernstein FC, Koetzle TF, Williams GJ, Meyer EF, Jr., Brice MD, Rodgers JR, Kennard O, Shimanouchi T, Tasumi M: The Protein Data Bank. A computer-based archival file for macromolecular structures. Eur J Biochem 1977, 80(2):319-324. 21.Henikoff S, Henikoff JG: Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci U S A 1992, 89(22):10915-10919. 22.Levin JM, Garnier J: Improvements in a secondary structure prediction method based on a search for local sequence homologies and its use as a model building tool. Biochim Biophys Acta 1988, 955(3):283-295. 23.Geourjon C, Deleage G: SOPM: a self-optimized method for protein secondary structure prediction. Protein Eng 1994, 7(2):157-164. 24.Bairoch A, Boeckmann B: The SWISS-PROT protein sequence data bank: current status. Nucleic Acids Res 1994, 22(17):3578-3580. 25.Higgins DG, Sharp PM: CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene 1988, 73(1):237-244. 26.A. Tossi LS, A. Giangaspero New consensus hydrophobicity scale extended to non-proteinogenic amino acids. Peptides 2002:416-417. 27.Tamm LK, Tatulian SA: Infrared spectroscopy of proteins and peptides in lipid bilayers. Q Rev Biophys 1997, 30(4):365-429. 28.Otzen D: Protein–surfactant interactions: A tale of many states. Biochim Biophys Acta-Proteins Proteom 2011, 1814(5):562-591. 29.Tulumello DV, Deber CM: SDS micelles as a membrane-mimetic environment for transmembrane segments. Biochemistry 2009, 48(51):12096-12103. 30.Giangaspero A, Sandri L, Tossi A: Amphipathic alpha helical antimicrobial peptides. Eur J Biochem 2001, 268(21):5589-5600. 31.Epand RM, Epand RF: Bacterial membrane lipids in the action of antimicrobial agents. J Pept Sci 2011, 17(5):298-305. 32.Shai Y: Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim Biophys Acta 1999, 1462(1-2):55-70. 33.Tam JP: Correlations of Cationic Charges with Salt Sensitivity and Microbial Specificity of Cystine-stabilized beta -Strand Antimicrobial Peptides. J Biol Chem 2002, 277(52):50450-50456. 34.Chen Y, Guarnieri MT, Vasil AI, Vasil ML, Mant CT, Hodges RS: Role of Peptide Hydrophobicity in the Mechanism of Action of -Helical Antimicrobial Peptides. Antimicrob Agents Chemother 2006, 51(4):1398-1406. 35.Wiradharma N, Khoe U, Hauser CA, Seow SV, Zhang S, Yang YY: Synthetic cationic amphiphilic alpha-helical peptides as antimicrobial agents. Biomaterials 2011, 32(8):2204-2212.
|