|
1.Baumann, P., Isolation of Acinetobacter from soil and water. J Bacteriol, 1968. 96(1): p. 39-42. 2.Barbe, V., et al., Unique features revealed by the genome sequence of Acinetobacter sp. ADP1, a versatile and naturally transformation competent bacterium. Nucleic Acids Res, 2004. 32(19): p. 5766-79. 3.Pagel, J.E. and P.L. Seyfried, Numerical taxonomy of aquatic Acinetobacter isolates. J Gen Microbiol, 1976. 96(2): p. 220-32. 4.Hsueh, P.R., et al., Pandrug-resistant Acinetobacter baumannii causing nosocomial infections in a university hospital, Taiwan. Emerg Infect Dis, 2002. 8(8): p. 827-32. 5.Jain, R. and L.H. Danziger, Multidrug-resistant Acinetobacter infections: an emerging challenge to clinicians. Ann Pharmacother, 2004. 38(9): p. 1449-59. 6.Russel, M., N.A. Linderoth, and A. Sali, Filamentous phage assembly: variation on a protein export theme. Gene, 1997. 192(1): p. 23-32. 7.Frye, J.G., et al., Host gene expression changes and DNA amplification during temperate phage induction. J Bacteriol, 2005. 187(4): p. 1485-92. 8.Ziedaite, G., et al., The Holin protein of bacteriophage PRD1 forms a pore for small-molecule and endolysin translocation. J Bacteriol, 2005. 187(15): p. 5397-405. 9.Young, I., I. Wang, and W.D. Roof, Phages will out: strategies of host cell lysis. Trends Microbiol, 2000. 8(3): p. 120-8. 10.López, R., E. García, and P. García, Enzymes for anti-infective therapy: phage lysins. Drug Discovery Today: Therapeutic Strategies, 2004. 1(4): p. 469-474. 11.Rotem, S., et al., Identification of antimicrobial peptide regions derived from genomic sequences of phage lysins. Peptides, 2006. 27(1): p. 18-26. 12.Loessner, M.J., Bacteriophage endolysins--current state of research and applications. Curr Opin Microbiol, 2005. 8(4): p. 480-7. 13.Bernhardt, T.G., et al., Breaking free: "protein antibiotics" and phage lysis. Res Microbiol, 2002. 153(8): p. 493-501. 14.Hermoso, J.A., J.L. Garcia, and P. Garcia, Taking aim on bacterial pathogens: from phage therapy to enzybiotics. Curr Opin Microbiol, 2007. 10(5): p. 461-72. 15.During, K., et al., The non-enzymatic microbicidal activity of lysozymes. FEBS Lett, 1999. 449(2-3): p. 93-100. 16.Smith, D.L., et al., Purification and biochemical characterization of the lambda holin. J Bacteriol, 1998. 180(9): p. 2531-40. 17.Hancock, R.E. and R. Lehrer, Cationic peptides: a new source of antibiotics. Trends Biotechnol, 1998. 16(2): p. 82-8. 18.Steiner, H., et al., Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature, 1981. 292(5820): p. 246-8. 19.Fernandez de Caleya, R., et al., Susceptibility of phytopathogenic bacteria to wheat purothionins in vitro. Appl Microbiol, 1972. 23(5): p. 998-1000. 20.Hancock, R.E.W., Peptide Antibiotics. Antimicrobial Agents and Chemotherapy, 1999. 43: p. 1317-1323. 21.Hancock, R.E., The role of cationic antimicrobial peptides in innate host defences. Trends in Microbiology., 2000. 8: p. 402-410. 22.Hancock, R.E., Cationic peptides: effectors in innate immunity and novel antimicrobials. Lancet Infect Dis, 2001. 1(3): p. 156-64. 23.Epand, R.M. and H.J. Vogel, Diversity of antimicrobial peptides and their mechanisms of action. Biochim Biophys Acta, 1999. 1462(1-2): p. 11-28. 24.Bulet, P., R. Stocklin, and L. Menin, Anti-microbial peptides: from invertebrates to vertebrates. Immunol Rev, 2004. 198: p. 169-84. 25.Simmaco, M., et al., Temporins, antimicrobial peptides from the European red frog Rana temporaria. Eur J Biochem, 1996. 242(3): p. 788-92. 26.Reddy, K.V., R.D. Yedery, and C. Aranha, Antimicrobial peptides: premises and promises. Int J Antimicrob Agents, 2004. 24(6): p. 536-47. 27.Cornet, B., et al., Refined three-dimensional solution structure of insect defensin A. Structure, 1995. 3(5): p. 435-48. 28.Otvos, L., Jr., The short proline-rich antibacterial peptide family. Cell Mol Life Sci, 2002. 59(7): p. 1138-50. 29.Brewer, D., H. Hunter, and G. Lajoie, NMR studies of the antimicrobial salivary peptides histatin 3 and histatin 5 in aqueous and nonaqueous solutions. Biochem Cell Biol, 1998. 76(2-3): p. 247-56. 30.Tsai, H. and L.A. Bobek, Human salivary histatins: promising anti-fungal therapeutic agents. Crit Rev Oral Biol Med, 1998. 9(4): p. 480-97. 31.Vunnam, S., P. Juvvadi, and R.B. Merrifield, Synthesis and antibacterial action of cecropin and proline-arginine-rich peptides from pig intestine. J Pept Res, 1997. 49(1): p. 59-66. 32.Selsted, M.E., et al., Indolicidin, a novel bactericidal tridecapeptide amide from neutrophils. J Biol Chem, 1992. 267(7): p. 4292-5. 33.Yeaman, M.R. and N.Y. Yount, Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev, 2003. 55(1): p. 27-55. 34.Tytler, E.M., et al., Molecular basis for prokaryotic specificity of magainin-induced lysis. Biochemistry, 1995. 34(13): p. 4393-401. 35.Koppelman, C.M., et al., Escherichia coli minicell membranes are enriched in cardiolipin. J Bacteriol, 2001. 183(20): p. 6144-7. 36.Tossi, A., L. Sandri, and A. Giangaspero, Amphipathic, alpha-helical antimicrobial peptides. Biopolymers, 2000. 55(1): p. 4-30. 37.Dathe, M., et al., Optimization of the antimicrobial activity of magainin peptides by modification of charge. FEBS Lett, 2001. 501(2-3): p. 146-50. 38.Matsuzaki, K., et al., Modulation of magainin 2-lipid bilayer interactions by peptide charge. Biochemistry, 1997. 36(8): p. 2104-11. 39.Mavri, J. and H.J. Vogel, Ion pair formation of phosphorylated amino acids and lysine and arginine side chains: a theoretical study. Proteins, 1996. 24(4): p. 495-501. 40.Peschel, A., et al., Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides. J Biol Chem, 1999. 274(13): p. 8405-10. 41.Yang, L., et al., Crystallization of antimicrobial pores in membranes: magainin and protegrin. Biophys J, 2000. 79(4): p. 2002-9. 42.Bello, J., H.R. Bello, and E. Granados, Conformation and aggregation of melittin: dependence on pH and concentration. Biochemistry, 1982. 21(3): p. 461-5. 43.Dathe, M. and T. Wieprecht, Structural features of helical antimicrobial peptides: their potential to modulate activity on model membranes and biological cells. Biochim Biophys Acta, 1999. 1462(1-2): p. 71-87. 44.Oishi, O., et al., Conformations and orientations of aromatic amino acid residues of tachyplesin I in phospholipid membranes. Biochemistry, 1997. 36(14): p. 4352-9. 45.Toke, O., Antimicrobial peptides: New candidates in the fight against bacterial infections. Biopolymers, 2005. 80(6): p. 717-735. 46.Yang, L., et al., Barrel-stave model or toroidal model? A case study on melittin pores. Biophys J, 2001. 81(3): p. 1475-85. 47.Hara, T., et al., Effects of peptide dimerization on pore formation: Antiparallel disulfide-dimerized magainin 2 analogue. Biopolymers, 2001. 58(4): p. 437-46. 48.Uematsu, N. and K. Matsuzaki, Polar angle as a determinant of amphipathic alpha-helix-lipid interactions: a model peptide study. Biophys J, 2000. 79(4): p. 2075-83. 49.Shai, Y. and Z. Oren, From "carpet" mechanism to de-novo designed diastereomeric cell-selective antimicrobial peptides. Peptides, 2001. 22(10): p. 1629-41. 50.Christensen, B., et al., Channel-forming properties of cecropins and related model compounds incorporated into planar lipid membranes. Proc Natl Acad Sci U S A, 1988. 85(14): p. 5072-6. 51.Brogden, K.A., Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol, 2005. 3(3): p. 238-50. 52.Mangoni, M.L., et al., Effects of the antimicrobial peptide temporin L on cell morphology, membrane permeability and viability of Escherichia coli. Biochem J, 2004. 380(Pt 3): p. 859-65. 53.Lehrer, R.I., et al., Interaction of human defensins with Escherichia coli. Mechanism of bactericidal activity. J Clin Invest, 1989. 84(2): p. 553-61. 54.Gennaro, R. and M. Zanetti, Structural features and biological activities of the cathelicidin-derived antimicrobial peptides. Biopolymers, 2000. 55(1): p. 31-49. 55.Park, C.B., et al., Structure-activity analysis of buforin II, a histone H2A-derived antimicrobial peptide: the proline hinge is responsible for the cell-penetrating ability of buforin II. Proc Natl Acad Sci U S A, 2000. 97(15): p. 8245-50. 56.Futaki, S., et al., Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J Biol Chem, 2001. 276(8): p. 5836-40. 57.Casteels, P., et al., Functional and chemical characterization of Hymenoptaecin, an antibacterial polypeptide that is infection-inducible in the honeybee (Apis mellifera). J Biol Chem, 1993. 268(10): p. 7044-54. 58.Boman, H.G., B. Agerberth, and A. Boman, Mechanisms of action on Escherichia coli of cecropin P1 and PR-39, two antibacterial peptides from pig intestine. Infect Immun, 1993. 61(7): p. 2978-84. 59.Patrzykat, A., et al., Sublethal concentrations of pleurocidin-derived antimicrobial peptides inhibit macromolecular synthesis in Escherichia coli. Antimicrob Agents Chemother, 2002. 46(3): p. 605-14. 60.Falla, T.J., D.N. Karunaratne, and R.E. Hancock, Mode of action of the antimicrobial peptide indolicidin. J Biol Chem, 1996. 271(32): p. 19298-303. 61.Dathe, M., et al., Hydrophobicity, hydrophobic moment and angle subtended by charged residues modulate antibacterial and haemolytic activity of amphipathic helical peptides. FEBS Lett, 1997. 403(2): p. 208-12. 62.Bessalle, R., et al., Augmentation of the antibacterial activity of magainin by positive-charge chain extension. Antimicrob Agents Chemother, 1992. 36(2): p. 313-7. 63.Eisenberg, D., A problem for the theory of biological structure. Nature, 1982. 295(5845): p. 99-100. 64.Finer-Moore, J. and R.M. Stroud, Amphipathic analysis and possible formation of the ion channel in an acetylcholine receptor. Proc Natl Acad Sci U S A, 1984. 81(1): p. 155-9. 65.Eisenberg, D., Three-dimensional structure of membrane and surface proteins. Annu Rev Biochem, 1984. 53: p. 595-623. 66.Sitaram, N. and R. Nagaraj, Interaction of antimicrobial peptides with biological and model membranes: structural and charge requirements for activity. Biochim Biophys Acta, 1999. 1462(1-2): p. 29-54. 67.Wilkins, M.R., et al., Protein identification and analysis tools in the ExPASy server. Methods Mol Biol, 1999. 112: p. 531-52. 68.Rice, P., I. Longden, and A. Bleasby, EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet, 2000. 16(6): p. 276-7. 69.Cole, C., J.D. Barber, and G.J. Barton, The Jpred 3 secondary structure prediction server. Nucleic Acids Res, 2008. 36(Web Server issue): p. W197-201. 70.McGuffin, L.J., K. Bryson, and D.T. Jones, The PSIPRED protein structure prediction server. Bioinformatics, 2000. 16(4): p. 404-5. 71.Tossi A, S.L., Giangaspero A, New consensus hydrophobicity scale extended to non-proteinogenic mino acids. Peptides, 2002. 72.Nilsson, J., B. Persson, and G. von Heijne, Consensus predictions of membrane protein topology. FEBS Lett, 2000. 486(3): p. 267-9. 73.Conlon, J.M., et al., Potent and rapid bactericidal action of alyteserin-1c and its [E4K] analog against multidrug-resistant strains of Acinetobacter baumannii. Peptides, 2010. 31(10): p. 1806-10. 74.Elemam, A., J. Rahimian, and M. Doymaz, In vitro evaluation of antibiotic synergy for polymyxin B-resistant carbapenemase-producing Klebsiella pneumoniae. J Clin Microbiol, 2010. 48(10): p. 3558-62. 75.Nomura, K., et al., Induction of morphological changes in model lipid membranes and the mechanism of membrane disruption by a large scorpion-derived pore-forming peptide. Biophys J, 2005. 89(6): p. 4067-80. 76.Haro, A., et al., Reconstitution of holin activity with a synthetic peptide containing the 1-32 sequence region of EJh, the EJ-1 phage holin. J Biol Chem, 2003. 278(6): p. 3929-36. 77.Becker, S.C., J. Foster-Frey, and D.M. Donovan, The phage K lytic enzyme LysK and lysostaphin act synergistically to kill MRSA. FEMS Microbiol Lett, 2008. 287(2): p. 185-91. 78.Matsuzaki, K., et al., Interactions of an antimicrobial peptide, magainin 2, with outer and inner membranes of Gram-negative bacteria. Biochim Biophys Acta, 1997. 1327(1): p. 119-30. 79.Henk, W.G., et al., The morphological effects of two antimicrobial peptides, hecate-1 and melittin, on Escherichia coli. Scanning Microsc, 1995. 9(2): p. 501-7.
|