(18.210.12.229) 您好!臺灣時間:2021/03/03 16:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:郭宜忠
研究生(外文):I-CHUNG KUO
論文名稱:快速無需校正的非線性畸變修正法於條碼解讀-實現工業級二維條碼Aztec (ISO/IEC24778)解碼器
論文名稱(外文):A Fast Calibrationless Method for Non-Linear Distortion Correction in Barcode Decoding:An Implementation of Industrial Aztec(ISO/IEC24778) 2D Barcode Decoder
指導教授:李正宇李正宇引用關係
指導教授(外文):Cheng-Yu Lee
學位類別:碩士
校院名稱:亞洲大學
系所名稱:生物資訊學系碩士班
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:52
中文關鍵詞:非線性畸變無需校正修正法抛物線擬合二維條碼解讀
外文關鍵詞:Non-Linear Distortion CorrectionRadial DistortionCalibrationless Correction MethodTrajectory Fitting2D Barcode DecodingAztec
相關次數:
  • 被引用被引用:4
  • 點閱點閱:418
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:98
  • 收藏至我的研究室書目清單書目收藏:0
本研究依照國際標準ISO/IEC 24778,以工業電腦視覺系統開發平台,設計與實現一種可自動修正非線性畸變(Non-Linear Distortion)之工業級Aztec二維條碼解碼系統。此法將條碼的非線性畸變,分別在垂直或水平方向上,以二次抛物線近似,取條碼影像上下緣或左右緣為基準進行四次抛物線擬合,並基於由上至下或由左至右的抛物線曲率為線性變化的合理假設,得出所有像素於失真前後的近似非線性關係,並據此進行反轉換。此法僅需四條抛物線的擬合及二次多項式中的簡單乘除運算,免除傳統上需系統校正及求解多元高次方程式的複雜運算。系統測詴結果顯示,此法可即時修正實際應用時常發生的非線性畸變問題,且免除系統校正的困擾,增加此二維條碼解碼器的強固性及效率。
In this study, we follow international standard ISO/IEC 24778 to design and implement, under an industrial vision development platform, a high-performance Aztec 2D barcode decoder with a new calibrationless correction method for non-linear distortion.
The proposed correction method horizontally and vertically fits the edges of a non-linear distorted barcode images to two sets of trajectory equations, respectively. References of the trajectory behaviors are those four distorted barcode boundary lines, which were straight before distortion. These best-fit trajectory equations can thereafter be used to reverse the distortion.
To simplify the derivation of the sets of the trajectory equations, a reasonable and practical assumption is given: curvature of horizontal or vertical sets of trajectories are changing linearly from top to bottom and from left to right boundaries of the given barcode image. By this assumption, these trajectory equations can be obtained by simple mathematics.
In this method, conventional computation-intensive equation solving, e.g. multivariate nonlinear optimizations, is avoided. Thus, an industrial class of barcode reader system with computation-efficient, calibrationless, and real-time non-linear correction can be achieved.
第一章 緒論 ............................................. 1
1-1 前言 .............................................. 1
1-2 文獻回顧 .......................................... 4
1-3 研究動機與目的 ..................................... 9
1-4 論文結構 ......................................... 14
第二章 方法 ............................................ 15
2-1 方法流程 ......................................... 15
2-2 膨脹運算和侵蝕運算 ................................ 16
2-3 影像二值化 ....................................... 18
2-4 區塊分析 ......................................... 23
2-4-1 四連結法(4-Connectivity) ...................... 23
2-4-2 八連結法(8-Connectivity) ...................... 25
2-4-3 區塊分析用途 .................................. 26
2-5 非線性畸變修正法 .................................. 27
2-5-1 抛物線擬合 .................................... 28
2-5-2 抛物線曲率線性變化 ............................ 28
2-5-3 反轉換 ........................................ 30
第三章 視窗化界面系統實作 .............................. 31
3-1 實驗環境 ......................................... 31
3-2 系統架構 ......................................... 32
3-3 系統建置 ......................................... 34
3-3-1 定位 ......................................... 34
3-3-2 方位校正和外觀尺寸 ............................ 36
3-3-3 取得條碼影像四周邊緣點 ........................ 37
3-3-4 非線性畸變修正法 .............................. 39
3-3-5 Aztec解碼 .................................... 40
第四章 結論 ............................................ 45
4-1 本研究之貢獻...................................... 45
4-2 本研究優點 ....................................... 46
4-3 本研究缺點 ....................................... 47
4-4 未來研究方向...................................... 48
參考文獻 ............................................... 50
[1]. Smith, W.E., Vakil, N., and Maislin, S.A., “Correction of Distortion in Endoscope Images,” IEEE Transactions on Medical Imaging, Vol. 11, No. 1, pp. 117–122, 1992.
[2]. Haneishi, H., Yagihashi, Y., and Miyake, Y., “A New Method for Distortion Correction of Electronic Endoscope Images,” IEEE Transactions on Medical Imaging, Vol. 14, No. 3, pp. 548–555, 1995.
[3]. Asari, K.V., Kumar, S., and Radhakrishnan, D., “A New Approach for Nonlinear Distortion Correction in Endoscopic Images Based on Least Squares Estimation,” IEEE Transactions on Medical Imaging, Vol. 18, No. 4, pp. 345-354, 1999.
[4]. Helferty, J.P., Zhang C., McLennan, G., and Higgins, W.E., “Videoendoscopic Distortion Correction and Its Application to Virtual Guidance of Endoscopy”, IEEE Transactions on Medical Imaging, Vol. 20, NO. 7, pp. 605-617, 2001.
[5]. Sun, H., Zhang, Y., and Luo, F., “A Novel Approach for Nonlinear Distortion Correction of Industrial Endoscope Images,” World Conference on Nondestructive Testing, pp. 25-28, 2008.
[6]. Otsu, N., “A Threshold Selection Method from Gray-Level Histograms”, IEEE Transactions on Systems, Man and Cybernetics, Vol. 9, No. 1, pp. 62-66, 1979.
[7]. Kapur, J.N., Sahoo, P.K., and Wang, A.K.C., “A New Method for Gray-Level Picture Thresholding Using The Entropy of The Histogram”, Computer Vision, Graphics, and Image Processing, Vol. 29, No. 3, pp. 273-285, 1985.
[8]. Weng, J., Cohen, P., and Herniou, M., “Calibration of Stereo Cameras Using A Nonlinear Distortion Model”, International Conference on Pattern Recognition, Vol. 1, pp. 246-253, 1990.
[9]. Tsai, R.Y., “An Efficient and Accurate Camera Calibration Technique for 3D Machine Vision”, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 1, pp. 364-374, 1986.
[10]. Faugeras, O.D., and Toscani, G., “Camera Calibration for 3D Computer Vision”, International Workshop on Industrial Applications of Machine Vision and Machine, pp. 240-247, 1987.
[11]. ISO/IEC24778, “Information Technology — Automatic Identification and Data Capture Techniques — Aztec Code Bar Code Symbology Specification,” International Standard, 2007.
[12]. Atkinson, K.B., “Developments in Close Range Photogrammetry“, Elsevier Science & Technology, 1980.
[13]. General Reed-Solomon Encoder/Decoder v1.04, Retrieved May 31, 2011, from http://www.masys.url.tw/.
[14]. ZebraTech Posts and Points-of-View from Zebra Technologies, Retrieved May 31, 2011, from http://blogs.zebra.com/blog/?Tag=healthcare.
[15]. 劉 俊 延, “內視鏡影像序列之形變校正與三維重構”, 國立成功大學資訊工程學系碩士論文,2003.
[16]. 簡大淵, “內視鏡影像序列之自動校正、重構與病灶量測”, 國立成功大學資訊工程學系碩士論文,2002.
[17]. 馬頌德,張正友,“計算機視覺-計算理論與算法基礎,科學出版社,1998.
[18]. 相機校正, 2011年05月31號, 取自http://image.cse.nsysu.edu.tw/research/camera_calib/calibration.htm.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔