(3.232.129.123) 您好!臺灣時間:2021/03/04 18:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:傅鈺婷
研究生(外文):Yu-Ting Fu
論文名稱:以適應性類神經網路為基礎方法於IEEE 1459-2000試用標準之電力檢測
論文名稱(外文):An ADALINE-Based Method for Power Measurements According to the IEEE Trial-Use Standard 1459–2000
指導教授:陳正一陳正一引用關係陳永進陳永進引用關係
指導教授(外文):Cheng-I ChenY. C. Chen
學位類別:碩士
校院名稱:亞洲大學
系所名稱:光電與通訊學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:71
中文關鍵詞:諧波頻率偏移適應性類神經網路普羅尼法
外文關鍵詞:harmonicsfundamental frequency deviationadaptive linear neural networkProny’s method
相關次數:
  • 被引用被引用:1
  • 點閱點閱:110
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著科技的發展,電力電子設備日漸益增,使得電力品質逐漸受到重視。其中,諧波問題是重要的干擾源之一,其影響了電力電子設備的運轉,影響範圍可大可小,對於一般家庭用電戶而言,或許只造成用電設備短期電力中斷,但對於大型設備可能會引發故障,甚至帶來經濟效應的問題,因此,電力品質的檢測是一項值得探討的議題。
為了要擁有良好的電力品質,必須先將電力系統進行諧波分析,進而提出改善策略。在諸多文獻當中,以快速傅立葉轉換使用最為廣泛。然而,有相當多的研究指出,直接地使用快速傅立葉轉換必須遵守其相對應的限制。因此,本文針對簡單又快速收斂的適應性類神經網路進行探討,在檢測諧波的實驗中發現,一旦頻率受到變動,將會導致分析結果不準確,特別是在檢測諧波相角時。為了增加適應性類神經網路的實用性,本文針對頻率偏移的部分做改善,利用普羅尼法可以準確地檢測到基頻,成功地改良此方法。
最後採用IEEE 1459-2000試用標準來進行電力量的檢測。在本論文中,我們亦利用圖形化介面的開發環境LabVIEW建置了量測系統,來驗證本文所提方法之效能,實驗結果證明,此方法不僅快速收斂且量測準確度不受頻率偏移的干擾。
With the development of technology, the power electronics have widely be used. This would make power quality draw much attention. Among of them, the harmonic pollution is an important disturbance source, which would influence the operation of power electronic devices. For the general end users, it may only cause the short-term power interruption in the electrical apparatus. But for the large electrical equipments, harmonics could lead to fault and even cause economical problem. Therefore, the detection of power quality is a noticeable issue.
In order to provide good power quality, it is necessary to perform power system harmonic analysis firstly and propose the improved strategies. Among numerous literatures, the fast Fourier transform (FFT) is one of the widely used approaches. However, most research has pointed out that it is necessary to meet the requirements when directly adopting the fast Fourier transform. Therefore, the adaptive linear neural network (ADALINE) with simple structure and fast convergence will be discussed in this thesis. In the experiment of harmonic detection, it is fount that once the fundamental frequency deviation is present, the estimation results would be inaccurate, especially for the detection of phase angles. To enhance the practicality of adaptive linear neural network, this thesis makes the improvement for fundamental frequency deviation. The fundamental frequency can be estimated accurately by Prony’s method.
Finally, IEEE 1459-2000 trial-use standard would be adopted to perform the measurement of power quantities. In this thesis, the graphical development environment LabVIEW would be used to build the measurement system and to verify the performance of proposed approach. From the experiment, it is shown that the proposed algorithm not only can achieve fast convergence but also can be very accurate without the interference of the fundamental frequency deviation.
中文摘要 I
英文摘要 II
目錄 III
圖目錄 VI
表目錄 VIII

第一章 緒論 1
1.1 研究動機 1
1.2 研究方法及目的 2
1.3 研究貢獻 3
1.4 論文架構 3

第二章 頻率變動與諧波 5
2.1 頻率變動 5
2.1.1 頻率變動現象 5
2.1.2 頻率變動管制標準 6
2.2 諧波概要 7
2.2.1 諧波定義 7
2.2.2 諧波指標 8
2.2.3 諧波來源 9
2.2.4 諧波管制標準 12

第三章 IEEE 1459-2000 基本電力量定義 15
3.1 前言 15
3.2 IEEE 1459-2000基本電力量定義 15

第四章諧波檢測方法探討 18
4.1 前言 18
4.2 快速傅立葉轉換 18
4.3 適應性類神經網路 21
4.4 效能比較 26

第五章 適應性類神經網路為基礎之改良方法 30
5.1 前言 30
5.2 頻率變動檢測 30
5.3以適應性類神經網路為基礎之改良方法於IEEE 1459-2000試用標準電力量檢測 33
5.4 模擬結果 35
5.4.1 頻率檢測 35
5.4.2 諧波分析 38
5.4.3 IEEE 1459-20002電力量測試 42
5.5 實測分析 50
5.5.1 量測系統架構 50
5.5.1.1 軟體介紹 51
5.5.1.2 硬體介紹 53
5.5.2 測試結果 55
5.6 本章結論 62

第六章 結論與未來研究方向 63
6.1 結論 63
6.2 未來研究方向 64

參考文獻 66
誌謝 69
作者簡介 71
[1]R. C. Dugan, M. F. McGranaghan, and H. W. Beaty, Electrical Power Systems Quality, McGraW-HILL International Editions, 2000.
[2]Compatibility Levels in Industrial Plants for Low-Frequency Conducted Disturbances, IEC Std. 61000-2-4, 2002.
[3]G. W. Chang, "Harmonic Theory," Chapter 2, IEEE Tutorial on Harmonic Modeling, IEEE PES WM and SM, 1988.
[4]Testing and Measurement Techniques – General Guide on Harmonics and Interharmonics Measurements and Instrumentation, for Power Supply Systems and Equipment Connected Thereto, IEC Std. 61000-4-7, 2002.
[5]IEEE Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems, IEEE Std. 519, 1992.
[6]J. Arrillaga, N. R. Watson, and S. Chen, Power System Quality Assessment, John Wiley & Sons Ltd, Jan. 2001.
[7]江榮成,「電力品質實務(一)」,全華科技,民國八十九年七月出版。
[8]IEEE Trial-Use Standard Definitions for the Measurement of Electric Power Quantities Under Sinusoidal, Non Sinusoidal, Balanced or Unbalanced Conditions, IEEE Std. 1459-2000, IEEE Standard, June 21, 2000, Upgraded to Full Use, September 12, 2002.
[9]S. K. Mitra, Digital Signal Processing: A Computer-Based Approach, Third Edition, McGraw-Hill, New York, 2006.
[10]A. Metin, Biomedical Signal Processing, Academic Press, Inc., California, 1994.
[11]M. Bertoluzzo, G. S. Buja, S. Castellan, and P. Fiorentin, “Neural Network Technique for the Joint Time-Frequency Analysis of Distorted Signal,” IEEE Trans. on Industrial Electronics, Vol. 50, No. 6, Dec. 2003, pp. 1109-1115.
[12]M. I. Marei, E. F. El-Saadany, and M. M. A. Salama, “Envelope Tracking Techniques for Flicker Mitigation and Voltage Regulation,” IEEE Trans. on Power Delivery, Vol. 19, No. 4, Oct. 2004, pp. 1854-1861.
[13]B. Singh, V. Verma, and J. Solanki, “Neural Network-Based Selective Compensation of Current Quality Problems in Distribution System,” IEEE Trans. on Industrial Electronics, Vol. 54, No. 1, Feb. 2007, pp. 53-60.
[14]D. O. Abdeslam, P. Wira, J. Merckle, D. Flieller, and Y. -A. Chapuis, “A Unified Artificial Neural Network Architecture for Active Power Filters,” IEEE Trans. on Industrial Electronics, Vol. 54, No. 1, Feb. 2007, pp. 61-76.
[15]Y. Yildiz, A. Sabanovic, and K. Abidi, “Sliding-Mode Neuro-Controller for Uncertain Systems,” IEEE Trans. on Industrial Electronics, Vol. 54, No. 3, June 2007, pp. 1676-1685.
[16]T. Lobos and J. Rezmer, "Real-Time Determination of Power System Frequency," IEEE Trans. on Instrumentation and Measurement, Vol. 46, No. 4, Aug. 1997, pp. 877-881.
[17]R. N. McDonough and W. H. Huggins, “Best Least-Square Representation of Signals by Exponentials” IEEE Trans. on Automatic Control, Vol. AC-13, Aug. 1968, pp. 408-412.
[18]R. Kumaresan, “On the Zeros of the Linear Prediction-Error Filter for Deterministic Signals,” IEEE Trans. on Acoustic Speech Signal Processing, Vol. ASSP-31, Feb. 1983, pp.217-220.
[19]R. Kumaresan and D. Tufts, “Estimating the Parameters of Exponentially Damped Sinusoidal and Pole-Zero Modeling in Noise,” IEEE Trans. on Acoustic Speech Signal Processing, Vol. ASSP-30, Dec. 1982, pp. 833-840.
[20]H. T. Joo, J. H. McClellan, R. A. Foale, G. S. Myers, and R. S. Lees, “Pole-Zero Modeling and Classification of Phonocardiograms,” IEEE Trans. on Biomedical Engineering, Vol. BME-30, Feb. 1983, pp.110-118.
[21]U. J. Meyer, P. M. Burkhard, T. W. Secomb, and M. Intenglietta, “The Prony Spectral Line Estimation (PSLE) Method for the Analysis of Vascular Oscillations,” IEEE Trans. on Biomedical Engineering, Vol. BME-36, No. 9, Sep. 1989, pp. 968-971.
[22]National Instruments, The Measurement and Automation, Catalog 2004.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔