(3.238.130.97) 您好!臺灣時間:2021/05/18 19:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄭偉佑
研究生(外文):Cheng, Weiyu
論文名稱:多孔性聚乙烯醇縮甲醛泡棉的製備與探討
論文名稱(外文):Preparation and Study of Porous Poly(vinyl formal) Foam
指導教授:張有義張有義引用關係
指導教授(外文):Chang, Youim
口試委員:楊怡寬喬緒明徐武軍徐治平
口試委員(外文):Yang, IkuanChiao, ShuminHsu, WuchunHsu, Jyhping
口試日期:2011-06-22
學位類別:博士
校院名稱:東海大學
系所名稱:化學工程與材料工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:213
中文關鍵詞:多孔性高分子結構親水性材料聚乙烯醇聚乙烯醇縮甲醛泡棉造孔劑相分離法布朗動態模擬法
外文關鍵詞:porous polymer structurehydrophilic materialpoly(vinyl alcohol)poly(vinyl formal) foampore-forming agentphase separation phenomenonBrownian dynamic simulation method
相關次數:
  • 被引用被引用:10
  • 點閱點閱:1224
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文使用對環境友好的高親水性聚乙烯醇(PVA)作為反應物,與甲醛進行縮醛化的交聯反應,來製備多孔性的聚乙烯醇縮甲醛泡棉(PVF Foam):可以在PVA與甲醛進行縮醛反應的過程中,混合入不參與聚合反應的氣體、溶劑或固體作為造孔劑或發泡劑,本論文則使用澱粉和矽酸鹽作為造孔劑;另一種製備多孔性PVF Foam的方法則為利用反應物之間的交聯反應性增加,造成溶質(PVF)與溶劑(H2O)之間的親合性降低,使得分子間產生相分離的現象,即可形成雙連續相的多孔性高分子結構。
PVA在經過縮醛化的反應之後,在高分子鏈段中仍維持高莫耳分率的羥基官能基,因此適合於水溶液的操作環境中使用,而此多孔性的PVF Foam,具有高孔隙率的三維網狀物理結構,在乾燥時形成耐衝擊性和高拉伸強度的硬質多孔性材料;在濕潤的情形下,則會呈現柔軟、富有彈性且堅韌的吸水泡棉。
在本研究中,使用聚合度為500且完全水解型的聚乙烯醇作為反應物,來合成多孔性的PVF Foam,其中探討不同的造孔機制、反應條件及穩定性控制的相關問題,以及模擬膠體粒子在PVF Brush Roller中,利用布朗動態模擬法預測其吸附過濾的動態行為。
由實驗的結果可以發現:
1. 當PVA溶液的黏度過低時,將無法有效地控制反應物或是造孔劑穩定懸浮於溶液中;若PVA溶液的黏度過高時,則無法有效地將反應物或是造孔劑均勻的分散在溶液中;降低PVA分子之間的交互作用力,可以避免多孔性的PVF Foam泡孔壁中PVA分子之間發生過度的縮合鍵結,而減少整體體積的收縮以維持材料尺寸的穩定性。
2. 以小麥澱粉和矽酸鈉作為造孔劑,來製備多孔性的PVF Foam:當造孔劑膠體於PVA溶液中的終端速度愈小時,可以獲得孔徑均一的PVF Foam,小麥澱粉可以藉由完全糊化的製程,來增加整體溶液的黏度,並且降低與溶液之間的密度差,而使其穩定的懸浮於溶液中;在經由矽酸鈉的酸中和反應合成微米級或是奈米級的二氧化矽時,可以減少膠體粒子的粒徑以及調整整體溶液的濃度,而使其穩定的懸浮於溶液中。
3. 利用PVF和H2O之間相分離的現象,來製備多孔性的PVF Foam:藉由減少PVA分子之間的交互作用力、整體溶液黏度的調整、反應率的控制和表面張力值的降低,利用兩水泡孔間的PVF泡孔壁模之流失排泄現象,以及PVA高分子鏈段上的羥基官能基與水分子親合性的關係,有效地控制PVF Foam的孔徑大小。
4. 以布朗動態模擬法結合以網絡模型描述PVF Foam中孔道分佈的方法,模擬膠體粒子於其中吸附過濾的動態行為,考慮具有DLVO吸附能障的膠體粒子,於正三角形網絡模型中的動態吸附行為,其中包括四種的吸附機制:布朗擴散運動、DLVO交互作用能、重力效應和攔截作用,可以建立準確的相關過濾係數預測方程式,預測膠體粒子在不同的操作條件下於PVF Foam中的吸附效率。

An environment friendly and hydrophilic route towards the synthesis of porous Poly(vinyl formal) foam is presented. Poly(vinyl alcohol) and formaldehyde hybrid materials were synthesized in aqueous medium by using sulfuric acid as catalyst, and compared the method of pore-forming agent with the phase separation phenomenon of porous PVF foam.
With the use of the wheat starch and sodium silicate as pore-forming agent within the PVF matrix, in order to obtain an uniform pore size of PVF foam, the effect of the drainage process of PVA solution between two pore-forming cells shall be considered; a capillary suction effect on pressure difference between cell walls and Plateau borders leads to rapid cell walls continuous thinning. A PVF foam with an uniform pore size distribution can be obtained through the well control of the reaction rate, the viscosity and the surface tension of overall solution.
A proposed correlation equation is presented in the present article, which can predict the the filter coefficient well under unfavorable deposition conditions. When comparing with available filtration experimental data for both large and small colloidal particles, we found that the present proposed correlation equation can give a good prediction on the filter coefficient of the present made PVF foam.
目錄
中文摘要 III
Abstract V
誌謝 VI
目錄 VIII
圖目錄 XII
表目錄 XXV
符號說明 XXVII
第一章 緒論 1
1-1 前言 1
1-2 研究方向 1
第二章 文獻回顧與原理介紹 4
2-1 聚乙烯醇(PVA) 4
2-1-1 物理性質 10
2-1-1-1 結晶性 10
2-1-1-2 熔點和玻璃轉移溫度 11
2-1-1-3 溶解度 12
2-1-1-4 溶液黏度 17
2-1-1-5 表面張力 22
2-1-2 化學性質 24
2-1-2-1 縮醛化反應 24
2-1-2-2 酯化反應 28
2-1-2-3 醚化反應 31
2-1-2-4 其他 32
2-2 多孔性的聚乙烯醇縮甲醛聚合物(PVF Foam) 34
2-2-1 聚乙烯醇縮甲醛反應 35
2-2-2 多孔性PVF Foam結構的形成與穩定機制 36
2-2-2-1 添加造孔劑製備多孔性的PVF Foam 36
2-2-2-2 以反應型的相分離法製備多孔性的PVF Foam 46
2-3 PVF Foam的應用 52
2-3-1 膠體粒子於PVF Brush Roller中的過濾行為 55
2-3-2 網絡模型 55
2-3-3 壓縮管模型 56
2-3-4 布朗動態模擬法 57
2-3-5 DLVO理論的能量曲線 59
2-3-6 相關的預測方程式 61
第三章 實驗方法 66
3-1 實驗流程圖 66
3-1-1 實驗反應流程 66
3-1-2 實驗測試流程 67
3-2 實驗儀器 68
3-3 實驗藥品 70
3-4 PVA溶液的基本物性測試 71
3-4-1 溶液黏度 - Viscometer 71
3-4-1-1 PVA溶液 71
3-4-1-2 在PVA溶液中加入小麥澱粉並且進行完全糊化的步驟 72
3-4-2 表面張力 - Dynamic Contact Angle(DCA) 73
3-4-2-1 PVA溶液的配製 73
3-4-2-2 動態接觸角測試 74
3-5 多孔性PVF Foam的製備 75
3-5-1 添加造孔劑製備多孔性的PVF Foam 75
3-5-1-1 造孔劑:小麥澱粉 75
3-5-1-2 造孔劑:矽酸鈉 77
3-5-2 利用反應型的相分離法製備多孔性PVF Foam 80
3-6 反應率分析 - UV-Visible Spectrophotometer and Instron 83
3-6-1 標準檢量線的製作 83
3-6-2 甲醛濃度的測量 84
3-6-3 反應時間與模數的比較 85
3-7 物性測試 86
3-7-1 試片製備 86
3-7-2 反應機制分析 - Fourier-Transform Infrared Spectrometer(FTIR) 86
3-7-3 表面結構與孔隙率分析 - Field Emission-Scanning Electron Microscope(FE-SEM) 87
3-7-4 機械強度分析 - Instron 87
3-7-5 含水率與保水率分析 - Thermogravimetric Analysis(TGA) 88
3-7-5-1 含水率分析 88
3-7-5-2 保水率分析 88
3-7-6 自由水份與結合水分的含量分析 - Thermogravimetric Analysis(TGA)and Differential Scanning Calorimetry(DSC) 89
3-7-7 玻璃轉移溫度分析 - Differential Scanning Calorimetry(DSC) 90
第四章 結果與討論 91
4-1 聚乙烯醇溶液的基本物理性質 93
4-1-1 溶液黏度 93
4-1-2 表面張力 96
4-2 反應機制 98
4-3 反應率分析 99
4-4 多孔性PVF Foam的物性分析 102
4-4-1 PVF Foam的表面結構與孔隙率分析 102
4-4-1-1 添加造孔劑製備多孔性的PVF Foam 102
4-4-1-2 以反應型的相分離法製備多孔性的PVF Foam 109
4-4-2 機械性質的分析 119
4-4-3 含水率與保水率的分析 123
4-4-3-1 含水率的分析 123
4-4-3-2 保水率 124
4-4-4 自由水份與結合水份的分析 129
4-4-5 玻璃轉移溫度的分析 131
4-5 修正相關的過濾係數預測方程式 133
第五章 結論與建議 136
參考文獻 140
附錄 148
App. A The introduction of Polyvinyl Acetate (PVAc). 148
App. B PVA grades and specifications of Chang Chun Petrochemical Co., Ltd113. 158
App. C Summary of experimental data adopted from the studies of Bai and Tien66, Elimelech and O’Mellia89, Elimelech90, and Vaidyanathan and Tien91. 161
App. D By the image analysis software92 to determine the pore size disturibution of PVF foam. 164
App. E BDEs in polymers, energy in kcal/mol, estimated uncertainty 2 kcal/mol. 178
簡歷 179

圖目錄
FIGURE 2 - 1 聚乙烯醇於水中的溶解度與水解程度之間的關係圖(其中,聚乙烯醇:DP = 1,700)14 14
FIGURE 2 - 2 聚乙烯醇於水中的溶解度與溫度之間的關係圖(其中,聚乙烯醇:DP = 500 - 2,400;DH = 80、88和98%)10, 14 15
FIGURE 2 - 3 聚乙烯醇經由不同溫度的熱處理過程之後,於40℃水溶液中的溶解度關係圖(其中,聚乙烯醇:DP = 1,700 - 1,800; DH = 98 - 99%)10, 14 16
FIGURE 2 - 4 聚乙烯醇溶液在不同濃度與溫度的條件下,整體溶液黏度的變化情形(其中,聚乙烯醇:DP = 500;DH = 98.5 - 99.2%)3 18
FIGURE 2 - 5 聚乙烯醇溶液在不同濃度與溫度的條件下,整體溶液黏度的變化情形(其中,聚乙烯醇:DP = 1,700;DH = 98.5 - 99.2%)3 18
FIGURE 2 - 6 聚乙烯醇溶液在不同濃度與溫度的條件下,整體溶液黏度的變化情形(其中,聚乙烯醇:DP = 500;DH = 86 - 89%)3 19
FIGURE 2 - 7 聚乙烯醇溶液在不同濃度與溫度的條件下,整體溶液黏度的變化情形(其中,聚乙烯醇:DP = 1,700;DH = 86 - 89%)3 19
FIGURE 2 - 8 聚乙烯醇溶液隨著靜置時間的增加,整體溶液黏度的變化情形(其中,聚乙烯醇:DP = 1,700 - 1,800; DH = 98 - 99%)14 20
FIGURE 2 - 9 聚乙烯醇溶液在不同靜置時間與水解程度的條件下,整體溶液黏度的變化情形(其中,溶液溫度為5℃)14 21
FIGURE 2 - 10 聚乙烯醇溶液的表觀黏度與水解程度的相互關係,以及聚乙烯醇於水中的溶解度與水解程度之間關係的示意圖4 21
FIGURE 2 - 11 聚乙烯醇溶液在不同濃度與水解程度的條件下,整體溶液表面張力的變化情形(其中,溶液溫度為20℃,聚乙烯醇:DP = 1,700)14 22
FIGURE 2 - 12 聚乙烯醇溶液在不同濃度與聚合度的條件下,整體溶液表面張力的變化情形(其中,溶液溫度為20℃,聚乙烯醇:DH = 87 - 89)14 23
FIGURE 2 - 13 製備多孔性的聚乙烯醇縮醛類聚合物時,聚乙烯醇濃度由高至低的示意圖[FIG. (A) TO (F)] 35(PVA POLYMER: WHITE; OTHERS: BLACK) 34
FIGURE 2 - 14 澱粉顆粒組織的結構示意圖38 38
FIGURE 2 - 15 一般常見的澱粉顆粒懸浮液,在不同溫度與操作條件下,整體溶液黏度的變化情形38 39
FIGURE 2 - 16 受到毛細現象和重力的影響之下,兩泡孔間的PVF泡孔壁膜流失排泄現象示意圖。其中,隨著反應時間的增加,使得PVF泡孔壁膜會逐漸地變薄(OVER PRESSURE IS INDICATED BY +, LOW PRESSURE BY -) 51
FIGURE 2 - 17 表示PVF BRUSH ROLLER以非接觸式的清潔模式:將膠體粒子由晶圓表面移除的示意圖 53
FIGURE 2 - 18 表示PVF BRUSH ROLLER以非接觸式的清潔模式:附著在晶圓表面上的膠體粒子,受到各種作用於其表面的作用力平衡示意圖 54
FIGURE 2 - 19 以正三角形的網路模型與正弦幾何結構的楔型管,來表示PVF FOAM中的多孔性介質結構示意圖65 57
FIGURE 2 - 20 四種不同形式的DLVO作用總能量VT與H的關係圖,其中NE1 = 105.5 AND NDL = 10.75 FOR CURVE A, NE1 = 50.0 AND NDL = 5.02 FOR CURVE B, NE1 = 77.0 AND NDL = 10.0 FOR CURVE C, NE1 = 0.0 AND NDL = 0.0 FOR CURVE D, AND NE2 = 1.0 AND NLO = 7.0 FOR ALL FOUR CURVES65 61
FIGURE 2 - 21 比較APP. C的實驗數據與EQ. ( 2 - 79 )和EQ. ( 2 - 84 )的預測結果 65 65
FIGURE 3 - 1 多孔性聚乙烯醇縮甲醛泡棉的製備流程圖 66
FIGURE 3 - 2 多孔性聚乙烯醇縮甲醛泡棉的性質測試流程圖 67
FIGURE 4 - 1 聚乙烯醇溶液在不同濃度與溫度的條件下,整體溶液黏度的實際變化情形(其中,聚乙烯醇:DP = 500;DH = 98.5 - 99.2%) 95
FIGURE 4 - 2 聚乙烯醇溶液在不同的小麥澱粉濃度與溶液溫度的條件下,整體溶液黏度的變化情形(其中,聚乙烯醇:DP = 500;DH = 98.5 - 99.2%;小麥澱粉經由完全糊化的製程) 95
FIGURE 4 - 3 聚乙烯醇溶液在不同濃度與溫度的條件下,整體溶液表面張力值的實際變化情形(其中,聚乙烯醇:DP = 500;DH = 98.5 - 99.2%) 97
FIGURE 4 - 4 聚乙烯醇溶液在不同濃度與溫度的條件下,考慮額外添加0.1%的脂肪醇聚氧乙烯醚,整體溶液表面張力值的實際變化情形(其中,聚乙烯醇:DP = 500;DH = 98.5 - 99.2%) 97
FIGURE 4 - 5 利用FTIR測量PVA和PVF的官能基在不同波長下的吸收值(其中,聚乙烯醇:DP = 500;DH = 98.5 - 99.2%) 98
FIGURE 4 - 6 利用UV-VISIBLE SPECTROPHOTOMETER在波長為412NM時,測量甲醛溶液的標準檢量線圖 100
FIGURE 4 - 7 在不同反應時間與反應溫度的條件下,聚乙烯醇與甲醛反應成為聚乙烯醇縮甲醛的轉化率關係圖(其中,聚乙烯醇:CPVA = 13WT%;DP = 500;DH = 98.5 - 99.2%) 101
FIGURE 4 - 8 在不同反應時間與反應溫度的條件下,多孔性聚乙烯醇縮甲醛的MODULUS變化情形(其中,聚乙烯醇:CPVA = 13WT%;DP = 500;DH = 98.5 - 99.2%) 101
FIGURE 4 - 9 以1.0WT%的小麥澱粉作為造孔劑,並且經由完全糊化的製程來製備多孔性的PVF FOAM,利用SEM觀察多孔性PVF FOAM的表面結構(其中,聚乙烯醇:CPVA = 12WT%;DP = 500;DH = 98.5 - 99.2%;TRXN = 60℃) 103
FIGURE 4 - 10 以2.0WT%的小麥澱粉作為造孔劑,並且經由完全糊化的製程來製備多孔性的PVF FOAM,利用SEM觀察多孔性PVF FOAM的表面結構(其中,聚乙烯醇:CPVA = 12WT%;DP = 500;DH = 98.5 - 99.2%;TRXN = 60℃) 103
FIGURE 4 - 11 以3.0WT%的小麥澱粉作為造孔劑,並且經由完全糊化的製程來製備多孔性的PVF FOAM,利用SEM觀察多孔性PVF FOAM的表面結構(其中,聚乙烯醇:CPVA = 12WT%;DP = 500;DH = 98.5 - 99.2%;TRXN = 60℃) 104
FIGURE 4 - 12 以4.0WT%的小麥澱粉作為造孔劑,並且經由完全糊化的製程來製備多孔性的PVF FOAM,利用SEM觀察多孔性PVF FOAM的表面結構(其中,聚乙烯醇:CPVA = 12WT%;DP = 500;DH = 98.5 - 99.2%;TRXN = 60℃) 104
FIGURE 4 - 13 以5.0WT%的小麥澱粉作為造孔劑,並且經由完全糊化的製程來製備多孔性的PVF FOAM,利用SEM觀察多孔性PVF FOAM的表面結構(其中,聚乙烯醇:CPVA = 12WT%;DP = 500;DH = 98.5 - 99.2%;TRXN = 60℃) 105
FIGURE 4 - 14 以0.1WT%的矽酸鈉作為造孔劑,來製備多孔性的PVF FOAM,利用SEM觀察多孔性PVF FOAM的表面結構(其中,聚乙烯醇:CPVA = 12WT%;DP = 500;DH = 98.5 - 99.2%;TRXN = 60℃) 106
FIGURE 4 - 15 以0.2WT%的矽酸鈉作為造孔劑,來製備多孔性的PVF FOAM,利用SEM觀察多孔性PVF FOAM的表面結構(其中,聚乙烯醇:CPVA = 12WT%;DP = 500;DH = 98.5 - 99.2%;TRXN = 60℃) 107
FIGURE 4 - 16 以0.3WT%的矽酸鈉作為造孔劑,來製備多孔性的PVF FOAM,利用SEM觀察多孔性PVF FOAM的表面結構(其中,聚乙烯醇:CPVA = 12WT%;DP = 500;DH = 98.5 - 99.2%;TRXN = 60℃) 107
FIGURE 4 - 17 以0.4WT%的矽酸鈉作為造孔劑,來製備多孔性的PVF FOAM,利用SEM觀察多孔性PVF FOAM的表面結構(其中,聚乙烯醇:CPVA = 12WT%;DP = 500;DH = 98.5 - 99.2%;TRXN = 60℃) 108
FIGURE 4 - 18 以0.5WT%的矽酸鈉作為造孔劑,來製備多孔性的PVF FOAM,利用SEM觀察多孔性PVF FOAM的表面結構(其中,聚乙烯醇:CPVA = 12WT%;DP = 500;DH = 98.5 - 99.2%;TRXN = 60℃) 108
FIGURE 4 - 19 使用不同濃度和造孔劑的種類,來製備多孔性的PVF FOAM,利用影像分析軟體92觀察多孔性PVF FOAM的表面孔隙率(其中,聚乙烯醇:CPVA = 12WT%;DP = 500;DH = 98.5 - 99.2%;TRXN = 60℃) 109
FIGURE 4 - 20 以反應型的相分離法,來製備多孔性的PVF FOAM,利用SEM觀察多孔性PVF FOAM的表面結構(其中,聚乙烯醇:CPVA = 12WT%;DP = 500;DH = 98.5 - 99.2%;TRXN = 60℃) 111
FIGURE 4 - 21 以反應型的相分離法,來製備多孔性的PVF FOAM,利用SEM觀察多孔性PVF FOAM的表面結構(其中,聚乙烯醇:CPVA = 12WT%;DP = 500;DH = 98.5 - 99.2%;TRXN = 50℃) 111
FIGURE 4 - 22 以反應型的相分離法,來製備多孔性的PVF FOAM,利用SEM觀察多孔性PVF FOAM的表面結構(其中,聚乙烯醇:CPVA = 13WT%;DP = 500;DH = 98.5 - 99.2%;TRXN = 60℃) 112
FIGURE 4 - 23 以反應型的相分離法,來製備多孔性的PVF FOAM,利用SEM觀察多孔性PVF FOAM的表面結構(其中,聚乙烯醇:CPVA = 13WT%;DP = 500;DH = 98.5 - 99.2%;TRXN = 50℃) 112
FIGURE 4 - 24 以反應型的相分離法,來製備多孔性的PVF FOAM,利用SEM觀察多孔性PVF FOAM的表面結構(其中,聚乙烯醇:CPVA = 14WT%;DP = 500;DH = 98.5 - 99.2%;TRXN = 60℃) 113
FIGURE 4 - 25 以反應型的相分離法,來製備多孔性的PVF FOAM,利用SEM觀察多孔性PVF FOAM的表面結構(其中,聚乙烯醇:CPVA = 14WT%;DP = 500;DH = 98.5 - 99.2%;TRXN = 50℃) 113
FIGURE 4 - 26 以反應型的相分離法,來製備多孔性的PVF FOAM,利用SEM觀察多孔性PVF FOAM的表面結構(其中,聚乙烯醇:CPVA = 15WT%;DP = 500;DH = 98.5 - 99.2%;TRXN = 60℃) 114
FIGURE 4 - 27 以反應型的相分離法,來製備多孔性的PVF FOAM,利用SEM觀察多孔性PVF FOAM的表面結構(其中,聚乙烯醇:CPVA = 15WT%;DP = 500;DH = 98.5 - 99.2%;TRXN = 50℃) 114
FIGURE 4 - 28 以反應型的相分離法,來製備多孔性的PVF FOAM,利用SEM觀察多孔性PVF FOAM的表面結構(其中,聚乙烯醇:CPVA = 16WT%;DP = 500;DH = 98.5 - 99.2%;TRXN = 60℃) 115
FIGURE 4 - 29 以反應型的相分離法,來製備多孔性的PVF FOAM,利用SEM觀察多孔性PVF FOAM的表面結構(其中,聚乙烯醇:CPVA = 16WT%;DP = 500;DH = 98.5 - 99.2%;TRXN = 50℃) 115
FIGURE 4 - 30 以反應型的相分離法,添加0.1%的脂肪醇聚氧乙烯醚,來製備多孔性的PVF FOAM,利用SEM觀察多孔性PVF FOAM的表面結構(其中,聚乙烯醇:CPVA = 12WT%;DP = 500;DH = 98.5 - 99.2%;TRXN = 60℃) 116
FIGURE 4 - 31 以反應型的相分離法,添加0.1%的脂肪醇聚氧乙烯醚,來製備多孔性的PVF FOAM,利用SEM觀察多孔性PVF FOAM的表面結構(其中,聚乙烯醇:CPVA = 13WT%;DP = 500;DH = 98.5 - 99.2%;TRXN = 60℃) 116
FIGURE 4 - 32 以反應型的相分離法,添加0.1%的脂肪醇聚氧乙烯醚,來製備多孔性的PVF FOAM,利用SEM觀察多孔性PVF FOAM的表面結構(其中,聚乙烯醇:CPVA = 14WT%;DP = 500;DH = 98.5 - 99.2%;TRXN = 60℃) 117
FIGURE 4 - 33 以反應型的相分離法,添加0.1%的脂肪醇聚氧乙烯醚,來製備多孔性的PVF FOAM,利用SEM觀察多孔性PVF FOAM的表面結構(其中,聚乙烯醇:CPVA = 15WT%;DP = 500;DH = 98.5 - 99.2%;TRXN = 60℃) 117
FIGURE 4 - 34 以反應型的相分離法,添加0.1%的脂肪醇聚氧乙烯醚,來製備多孔性的PVF FOAM,利用SEM觀察多孔性PVF FOAM的表面結構(其中,聚乙烯醇:CPVA = 16WT%;DP = 500;DH = 98.5 - 99.2%;TRXN = 60℃) 118
FIGURE 4 - 35 以反應型的相分離法,考慮是否添加0.1%的脂肪醇聚氧乙烯醚,來製備多孔性的PVF FOAM,利用影像分析軟體92觀察多孔性PVF FOAM的表面孔隙率(其中,聚乙烯醇:DP = 500;DH = 98.5 - 99.2%) 118
FIGURE 4 - 36 以小麥澱粉作為造孔劑,並且經由完全糊化的製程來製備多孔性的PVF FOAM,利用INSTRON測量多孔性PVF FOAM的MODULUS(其中,聚乙烯醇:CPVA = 12WT%;DP = 500;DH = 98.5 - 99.2%;TRXN = 60℃) 120
FIGURE 4 - 37 以矽酸鈉作為造孔劑,來製備多孔性的PVF FOAM,利用INSTRON測量多孔性PVF FOAM的MODULUS(其中,聚乙烯醇:CPVA = 12WT%;DP = 500;DH = 98.5 - 99.2%;TRXN = 60℃) 121
FIGURE 4 - 38 以反應型的相分離法,來製備多孔性的PVF FOAM,利用INSTRON測量多孔性PVF FOAM的MODULUS(其中,聚乙烯醇:DP = 500;DH = 98.5 - 99.2%) 121
FIGURE 4 - 39 以反應型的相分離法,添加0.1%的脂肪醇聚氧乙烯醚,來製備多孔性的PVF FOAM,利用INSTRON測量多孔性PVF FOAM的MODULUS(其中,聚乙烯醇: DP = 500;DH = 98.5 - 99.2%;TRXN = 60℃) 122
FIGURE 4 - 40 以反應型的相分離法,來製備多孔性的PVF FOAM,利用TGA測量多孔性PVF FOAM的含水率(其中,聚乙烯醇:DP = 500;DH = 98.5 - 99.2%) 124
FIGURE 4 - 41 以小麥澱粉作為造孔劑,並且經由完全糊化的製程來製備多孔性的PVF FOAM,利用TGA測量多孔性PVF FOAM的保水率(其中,聚乙烯醇:CPVA = 12WT%;DP = 500;DH = 98.5 - 99.2%;TRXN = 60℃;TDRY = 50℃) 126
FIGURE 4 - 42 以矽酸鈉作為造孔劑,來製備多孔性的PVF FOAM,利用TGA測量多孔性PVF FOAM的保水率(其中,聚乙烯醇:CPVA = 12WT%;DP = 500;DH = 98.5 - 99.2%;TRXN = 60℃;TDRY = 50℃) 127
FIGURE 4 - 43 以反應型的相分離法,來製備多孔性的PVF FOAM,利用TGA測量多孔性PVF FOAM的保水率(其中,聚乙烯醇:DP = 500;DH = 98.5 - 99.2%;TRXN = 50℃;TDRY = 50℃) 127
FIGURE 4 - 44 以反應型的相分離法,來製備多孔性的PVF FOAM,利用TGA測量多孔性PVF FOAM的保水率(其中,聚乙烯醇:DP = 500;DH = 98.5 - 99.2%;TRXN = 60℃;TDRY = 50℃) 128
FIGURE 4 - 45 以反應型的相分離法,添加0.1%的脂肪醇聚氧乙烯醚,來製備多孔性的PVF FOAM,利用INSTRON測量多孔性PVF FOAM的MODULUS(其中,聚乙烯醇: DP = 500;DH = 98.5 - 99.2%;TRXN = 60℃;TDRY = 50℃) 128
FIGURE 4 - 46 以反應型的相分離法,來製備多孔性的PVF FOAM,利用TGA和DSC測量多孔性PVF FOAM的自由水份和結合水份含量(其中,聚乙烯醇:DP = 500;DH = 98.5 - 99.2%;TRXN = 50℃) 129
FIGURE 4 - 47 以反應型的相分離法,來製備多孔性的PVF FOAM,利用TGA和DSC測量多孔性PVF FOAM的自由水份和結合水份含量(其中,聚乙烯醇:DP = 500;DH = 98.5 - 99.2%;TRXN = 60℃) 130
FIGURE 4 - 48 以反應型的相分離法,來製備多孔性的PVF FOAM,利用DSC測量多孔性PVF FOAM的玻璃轉移溫度(其中,聚乙烯醇:DP = 500;DH = 98.5 - 99.2%;TRXN = 50℃ OR 60℃) 132
FIGURE 4 - 49 比較APP. C的實驗數據與EQ. ( 2 - 79 )和EQ. ( 2 - 84 )的預測結果(其中,不考慮VAIDYANATHAN和TIEN的實驗數據91)97 133
FIGURE 4 - 50 比較APP. C的實驗數據與EQ. ( 2 - 84 )和EQ. ( 4 - 1 )的預測結果(其中,不考慮VAIDYANATHAN和TIEN的實驗數據91)97 134
FIGURE 4 - 51 比較APP. C的實驗數據與EQ. ( 2 - 84 )和EQ. ( 4 - 1 )的預測結果(其中,考慮VAIDYANATHAN和TIEN的實驗數據91)97 135
FIGURE D - 1 COMPARISON THE RESULT OF FIGURE 4 - 9, THE CONCENTRATION OF 12WT% PVA SOLUTION AND 1.0WT% WHEAT STARCH AFTER GELATINIZATION, THE REACTION TEMPERATURE AT 60℃, TO SYNTHESIZE POROUS PVF FOAM. 164
FIGURE D - 2 COMPARISON THE RESULT OF FIGURE 4 - 10, THE CONCENTRATION OF 12WT% PVA SOLUTION AND 2.0WT% WHEAT STARCH AFTER GELATINIZATION, THE REACTION TEMPERATURE AT 60℃, TO SYNTHESIZE POROUS PVF FOAM. 164
FIGURE D - 3 COMPARISON THE RESULT OF FIGURE 4 - 11, THE CONCENTRATION OF 12WT% PVA SOLUTION AND 3.0WT% WHEAT STARCH AFTER GELATINIZATION, THE REACTION TEMPERATURE AT 60℃, TO SYNTHESIZE POROUS PVF FOAM. 165
FIGURE D - 4 COMPARISON THE RESULT OF FIGURE 4 - 12, THE CONCENTRATION OF 12WT% PVA SOLUTION AND 4.0WT% WHEAT STARCH AFTER GELATINIZATION, THE REACTION TEMPERATURE AT 60℃, TO SYNTHESIZE POROUS PVF FOAM. 165
FIGURE D - 5 COMPARISON THE RESULT OF FIGURE 4 - 13, THE CONCENTRATION OF 12WT% PVA SOLUTION AND 5.0WT% WHEAT STARCH AFTER GELATINIZATION, THE REACTION TEMPERATURE AT 60℃, TO SYNTHESIZE POROUS PVF FOAM. 166
FIGURE D - 6 COMPARISON THE RESULT OF FIGURE 4 - 14, THE CONCENTRATION OF 12WT% PVA SOLUTION AND 0.1WT% SODIUM SILICATE, THE REACTION TEMPERATURE AT 60℃, TO SYNTHESIZE POROUS PVF FOAM. 167
FIGURE D - 7 COMPARISON THE RESULT OF FIGURE 4 - 15, THE CONCENTRATION OF 12WT% PVA SOLUTION AND 0.2WT% SODIUM SILICATE, THE REACTION TEMPERATURE AT 60℃, TO SYNTHESIZE POROUS PVF FOAM. 167
FIGURE D - 8 COMPARISON THE RESULT OF FIGURE 4 - 16, THE CONCENTRATION OF 12WT% PVA SOLUTION AND 0.3WT% SODIUM SILICATE, THE REACTION TEMPERATURE AT 60℃, TO SYNTHESIZE POROUS PVF FOAM. 168
FIGURE D - 9 COMPARISON THE RESULT OF FIGURE 4 - 17, THE CONCENTRATION OF 12WT% PVA SOLUTION AND 0.4WT% SODIUM SILICATE, THE REACTION TEMPERATURE AT 60℃, TO SYNTHESIZE POROUS PVF FOAM. 168
FIGURE D - 10 COMPARISON THE RESULT OF FIGURE 4 - 18, THE CONCENTRATION OF 12WT% PVA SOLUTION AND 0.4WT% SODIUM SILICATE, THE REACTION TEMPERATURE AT 60℃, TO SYNTHESIZE POROUS PVF FOAM. 169
FIGURE D - 11 COMPARISON THE RESULT OF FIGURE 4 - 20, THE CONCENTRATION OF 12WT% PVA SOLUTION WITHOUT PORE-FORMING AGENT, THE REACTION TEMPERATURE AT 60℃, TO SYNTHESIZE POROUS PVF FOAM. 170
FIGURE D - 12 COMPARISON THE RESULT OF FIGURE 4 - 21, THE CONCENTRATION OF 12WT% PVA SOLUTION WITHOUT PORE-FORMING AGENT, THE REACTION TEMPERATURE AT 50℃, TO SYNTHESIZE POROUS PVF FOAM. 170
FIGURE D - 13 COMPARISON THE RESULT OF FIGURE 4 - 22, THE CONCENTRATION OF 13WT% PVA SOLUTION WITHOUT PORE-FORMING AGENT, THE REACTION TEMPERATURE AT 60℃, TO SYNTHESIZE POROUS PVF FOAM. 171
FIGURE D - 14 COMPARISON THE RESULT OF FIGURE 4 - 23, THE CONCENTRATION OF 13WT% PVA SOLUTION WITHOUT PORE-FORMING AGENT, THE REACTION TEMPERATURE AT 50℃, TO SYNTHESIZE POROUS PVF FOAM. 171
FIGURE D - 15 COMPARISON THE RESULT OF FIGURE 4 - 24, THE CONCENTRATION OF 14WT% PVA SOLUTION WITHOUT PORE-FORMING AGENT, THE REACTION TEMPERATURE AT 60℃, TO SYNTHESIZE POROUS PVF FOAM. 172
FIGURE D - 16 COMPARISON THE RESULT OF FIGURE 4 - 24, THE CONCENTRATION OF 14WT% PVA SOLUTION WITHOUT PORE-FORMING AGENT, THE REACTION TEMPERATURE AT 50℃, TO SYNTHESIZE POROUS PVF FOAM. 172
FIGURE D - 17 COMPARISON THE RESULT OF FIGURE 4 - 26, THE CONCENTRATION OF 15WT% PVA SOLUTION WITHOUT PORE-FORMING AGENT, THE REACTION TEMPERATURE AT 60℃, TO SYNTHESIZE POROUS PVF FOAM. 173
FIGURE D - 18 COMPARISON THE RESULT OF FIGURE 4 - 27, THE CONCENTRATION OF 15WT% PVA SOLUTION WITHOUT PORE-FORMING AGENT, THE REACTION TEMPERATURE AT 50℃, TO SYNTHESIZE POROUS PVF FOAM. 173
FIGURE D - 19 COMPARISON THE RESULT OF FIGURE 4 - 28, THE CONCENTRATION OF 16WT% PVA SOLUTION WITHOUT PORE-FORMING AGENT, THE REACTION TEMPERATURE AT 60℃, TO SYNTHESIZE POROUS PVF FOAM. 174
FIGURE D - 20 COMPARISON THE RESULT OF FIGURE 4 - 29, THE CONCENTRATION OF 16WT% PVA SOLUTION WITHOUT PORE-FORMING AGENT, THE REACTION TEMPERATURE AT 50℃, TO SYNTHESIZE POROUS PVF FOAM. 174
FIGURE D - 21 COMPARISON THE RESULT OF FIGURE 4 - 30, THE CONCENTRATION OF 12WT% PVA SOLUTION AND 0.1% POLYOXYETHYLENE LAURYL ETHER, THE REACTION TEMPERATURE AT 60℃, TO SYNTHESIZE POROUS PVF FOAM. 175
FIGURE D - 22 COMPARISON THE RESULT OF FIGURE 4 - 31, THE CONCENTRATION OF 13WT% PVA SOLUTION AND 0.1% POLYOXYETHYLENE LAURYL ETHER, THE REACTION TEMPERATURE AT 60℃, TO SYNTHESIZE POROUS PVF FOAM. 175
FIGURE D - 23 COMPARISON THE RESULT OF FIGURE 4 - 32, THE CONCENTRATION OF 14WT% PVA SOLUTION AND 0.1% POLYOXYETHYLENE LAURYL ETHER, THE REACTION TEMPERATURE AT 60℃, TO SYNTHESIZE POROUS PVF FOAM. 176
FIGURE D - 24 COMPARISON THE RESULT OF FIGURE 4 - 33, THE CONCENTRATION OF 15WT% PVA SOLUTION AND 0.1% POLYOXYETHYLENE LAURYL ETHER, THE REACTION TEMPERATURE AT 60℃, TO SYNTHESIZE POROUS PVF FOAM. 176
FIGURE D - 25 COMPARISON THE RESULT OF FIGURE 4 - 34, THE CONCENTRATION OF 15WT% PVA SOLUTION AND 0.1% POLYOXYETHYLENE LAURYL ETHER, THE REACTION TEMPERATURE AT 60℃, TO SYNTHESIZE POROUS PVF FOAM. 177
FIGURE E - 1 BDE FOR FULLY HYDROLYZED GRADE OF PVA 178
FIGURE E - 2 BDE FOR POLYVINYL FORMAL 178

表目錄
TABLE 2 - 1 聚乙烯醇的基本物理性質10 8
TABLE 2 - 2 聚乙烯醇的分子結構與物理、化學和反應性的相關性11 9
TABLE 2 - 3 可溶解與不可溶解完全水解型聚乙烯醇的溶劑13 12
TABLE 2 - 4 可溶解與不可溶解部分水解型聚乙烯醇的溶劑13 13
TABLE 2 - 5 各種不同種類的電解質,使得聚乙烯醇溶液產生膠凝沉降所需要的最少含量(其中,聚乙烯醇:濃度為5WT%;DP = 1,700 - 1,800; DH = 98 - 99%)10, 14 17
TABLE 2 - 6 可溶解與不可溶解聚乙烯醇縮甲醛以及其他聚乙烯醇縮醛類的溶劑13 27
TABLE 2 - 7 直鏈澱粉和支鏈澱粉的物理化學性質37 37
TABLE 2 - 8 天然澱粉的糊化特性39 40
TABLE 2 - 9 DAVIES’ METHOD中親水基與疏水基的基數值51, 52 48
TABLE 3 - 1 實驗儀器清單 68
TABLE 3 - 2 實驗藥品清單 70
TABLE 4 - 1 實驗數據與EQ. ( 2 - 79 )、EQ. ( 2 - 79 )和EQ. ( 4 - 1 )的預測結果,於FIGURE 2 - 21、FIGURE 4 - 49、FIGURE 4 - 50和FIGURE 4 - 51的對角線圖中,比較實驗值與模擬值的平均變異數值97 135
TABLE A - 1 SEVERAL REDOX SYSTEMS HAVE BEEN EXPLORED FOR THE SOLUTION POLYMERIZATION OF VINYL ACETATE105. 154
TABLE A - 2 RADIATION – INDUCED VINYL ACETATE POLYMERIZATION105. 155
TABLE B - 1 STANDARD GRADES OF PVA113. 158
TABLE B - 2 LOW FOAMING GRADES OF PVA113. 159
TABLE B - 3 TACKIFIED GRADES OF PVA113. 159
TABLE B - 4 FINE PARTICLE(5) GRADES AND S-GRADES OF PVA113. 159
TABLE C - 1 EXPERIMENTAL DATA ADOPTED FROM THE STUDY OF BAI AND TIEN66. 161
TABLE C - 2 EXPERIMENTAL DATA ADOPTED FROM THE STUDY OF ELIMELECH AND O’MELLIA89. 162
TABLE C - 3 EXPERIMENTAL DATA ADOPTED FROM THE STUDY OF ELIMELECH90. 162
TABLE C - 4 EXPERIMENTAL DATA ADOPTED FROM THE STUDY OF VAIDYANATHAN AND TIEN91. 163
1.Herrmann, W. O.; Haehnel, W. 1924.
2.Marten, F. L.; Zvanut, C. W., Hydrolysis of Polyvinyl Acetate to Polyvinyl Alcohol. 2nd ed.; John Wiley & Sons Ltd: 1992.
3.Chang Chun PetroChemical Co., L. Manual of polyvinyl alcohol; 2003.
4.Briscoe, B.; Luckham, P.; Zhu, S., The effects of hydrogen bonding upon the viscosity of aqueous poly(vinyl alcohol) solutions. Polymer 2000, 41, 3851-3860.
5.Plastics. Poly(vinyl alcohol) (PVAL) materials. Designation system and basis for specifications. 2006.
6.Saxena, S. K., Chemical and Technical Assessment - Polyvinyl alcohol. In 61st Joint FAO/WHO Expert Committee on Food Additives, 2004.
7.Hallensleben, M. L., Polyvinyl Compounds, Others. In Ullmann's Encyclopedia of Industrial Chemistry, Sixth ed.; Wiley-VCH: 2003; pp 1-18.
8.Noro, K., Emulsion polymerization of vinyl acetate in relation to the chemical structure of polyvinyl alcohol. British Polymer Journal 1970, 2, (2), 128-134.
9.Yu Fang, L.; Li, M., Production technology and market analysis of polyvinyl alcohol worldwide. Chemical Industry 2010, 28, (4), 32-35.
10.Marten, F. L., Vinyl Alcohol Polymers. In Encyclopedia of Polymer Science and Engineering, 2nd ed.; Kroschwitz, J. I.; Mark, H. F.; Bikales, N. M.; Overberger, C. G.; Menges, G., Eds. John Wiley & Sons, Inc.: 1989; Vol. 17, pp 167-198.
11.Asahina, K., Developments in the Production and Applications of Polyvinyl Butyral and Other Polyvinyl Acetals. 2nd ed.; John Wiley & Sons Ltd: 1992.
12.Goodship, V.; Jacobs, D. Polyvinyl alcohol: materials, processing and applications; 191; Smithers Rapra Press 2005.
13.Brandrup, J.; Immergut, E. H.; Grulke, E. A., Polymer Handbook. 4th ed.; Wiley-Interscience: 2003.
14.Okaya, T., General Properties of Polyvinyl Alcohol in Relation to Its Applications. 2nd ed.; John Wiley & Sons Ltd: 1992.
15.Hara, C.; Matsuo, M., Phase separation in aqueous poly(vinyl alcohol) solution. Polymer 1995, 36, (3), 603-609.
16.Komatsu, M.; Inoue, T.; Miyasaka, K., Light-scattering studies on the sol - gel transition in aqueous solutions of poly(vinyl alcohol). Journal of Polymer Science Part B: Polymer Physics 1986, 24, (2), 303-311.
17.Liu, M.; Cheng, R.; Qian, R., Effect of solution concentration on the gelation of aqueous polyvinyl alcohol solution. Journal of Polymer Science Part B: Polymer Physics 1995, 33, (12), 1731-1735.
18.Bhattacharya, A.; Ray, P., Studies on surface tension of poly(vinyl alcohol): effect of concentraion, temperature and addition of chaotropic agents. Journal of Applied Polymer Science 2004, 93, 122-130.
19.Finch, C. A., Chemical Reactions and Stereochemistry of Polyvinyl Alcohol. 2nd ed.; John Wiley & Sons Ltd: 1992.
20.Blomstrom, T. P., Vinyl Acetal Polymers. In Encyclopedia of Polymer Science and Engineering, 2nd ed.; Kroschwitz, J. I.; Mark, H. F.; Bikales, N. M.; Overberger, C. G.; Menges, G., Eds. John Wiley & Sons, Inc.: 1989; Vol. 17, pp 136-167.
21.Panero, S.; Fiorenza, P.; Navarra, M. A.; Romanowska, J.; Scrosati, B., Silica-added, composite poly(vinyl alcohol) membranes for fuel cell application. Journal of The Electrochemical Society 2005, 152, (2), A2400-A2405.
22.Yeom, C. K.; Lee, K. H., Pervaporation separation of water-acetic acid mixtures through poly(vinyl alcohol) membranes crosslinked with glutaraldehyde. Journal of Membrane Science 1996, 109, 257-265.
23.Robb, I. D.; Smeulders, J. B. A. F., The rheological properties of weak gels of poly(vinyl alcohol) and sodium borate. Polymer 1997, 38, (9), 2165-2169.
24.Shibayama, M.; Sato, M.; Kimura, Y.; Fujiwara, H.; Nomura, S., 11B n. m. r. study on the reaction of poly(vinyl alcohol) with boric acid. Polymer 1988, 29, (2), 336-340.
25.Sakurada, I.; Nakajima, A.; Shibatani, K., Dilute solution properties of partly urethanized polyvinyl alcohol. Journal of Polymer Science Part A: General Papers 1964, 2, (8), 3545-3556.
26.Rhim, J. W.; Yeom, C. K.; Kim, S. W., Modification of poly(vinyl alcohol) membranes using sulfur-succinic acid and its application to pervaporation separation of water-alcohol mixtures. Journal of Applied Polymer Science 1998, 68, 1717-1723.
27.Arndt, K. F.; Richter, A.; Ludwig, S.; Zimmermann, J.; Kressler, J.; Kuckling, D.; Adler, H. J., Poly(vinyl alcohol)/poly(acrylic acid) hydrogels: FT-IR spectroscopic characterization of crosslinking reaction and work at transition point. Acta Polymerica 1999, 50, 383-390.
28.Rhim, J. W.; Sohn, M. Y.; Joo, H. J.; Lee, K. H., Pervaporation separation of binary organic - aqueous liquid mixtures using crosslinked PVA membranes. I. Characterization of the reaction between PVA and PAA. Journal of Applied Polymer Science 1993, 50, 679-684.
29.Huang, R. Y. M.; Rhim, J. W., Modification of poly(vinyl alcohol) using maleic acid and its application to separation of acetic acid - water mixtures by the pervaporation technique. Polymer International 1993, 30, 129-135.
30.Carlotti, S. J.; Beaune, O. G.; Schué, F., Water-soluble poly(vinyl alcohol) grafted with propylene oxide and epichlorohydrin: characterization, mechanical properties and model. reactions. Journal of Applied Polymer Science 2001, 81, 2868-2874.
31.Danno, A., Gel formation of aqueous solution of polyvinyl alcohol irradiated by gamma rays from Cobalt-60. Journal of the Physical Society of Japan 1958, 13, 722-727.
32.Philipp, W. H.; Hsu, L. C. Three methods for in situ cross-linking of polyvinyl alcohol films for application as ion-conducting membranes in potassium hydroxide electrolyte; NASA-TP-1407 NASA Technical Paper: 1979; p 18.
33.Peppas, N. A., Turbidimetric studies of aqueous poly(vinyl alcohol) solutions. Die Makromolekulare Chemie 1975, 176, 3433-3440.
34.Hassan, C. M.; Peppas, N. A., Structure and Applications of Poly(vinyl alcohol) Hydrogels Produced by Conventional Crosslinking or by Freezing/Thawing Methods. Springer: 2000; Vol. 153.
35.Jiang, M.; Eisenberg, A.; Liu, G.; Zhang, X., Macromolecular Self-Assembly. Science Press: Beijing, 2006.
36.BeMiller, J.; Whistler, R., Starch: Chemistry and Technology. 3rd ed.; Academic Press: 2009.
37.Daniel, J. R.; Whistler, R. L.; Röper, H.; Elvers, B., Starch. In Ullmann's Encyclopedia of Industrial Chemistry, Sixth ed.; Wiley-VCH: 2003; pp 1-25.
38.Jane, J. L., Structural Features of Starch Granules II. 3rd ed.; Academic Press: 2009.
39.Biliaderis, C. G., Structural Transitions and Related Physical Properties of Starch. 3rd ed.; Academic Press: 2009.
40.Stöber, W.; Fink, A.; Bohn, E., Controlled growth of monodisperse silica spheres in the micron size range. Journal of Colloid and Interface Science 1968, 26, (1), 62-69.
41.Chen, S. L.; Dong, P.; Yang, G. H.; Yang, J. J., Characteristic Aspects of Formation of New Particles during the Growth of Monosize Silica Seeds. Journal of Colloid and Interface Science 1996, 180, (1), 237-241.
42.Yoshida, A., Silica Nucleation, Polymerization, and Growth Preparation of Monodispersed Sols. American Chemical Society: 1994; Vol. 234.
43.Lee, Y. K.; Yoon, Y. R.; Rhee, H. K., Preparation of colloidal silica using peptization method. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2000, 173, 109-116.
44.Tsai, M. S., The study of formation colloidal silica via sodium silicate. Materials Science and Engineering 2004, B106, 52-55.
45.Shaw, D. J., The Electric Double Layer. 4th ed.; Butterworth-Heinemann: 1992.
46.張有義; 郭蘭生, 電荷交界面-電雙層理論. 2nd ed.; 高立圖書有限公司: 2004.
47.Shaw, D. J., Colloid Stability - Systems Containing Lyophilic Material. 4th ed.; Butterworth-Heinemann: 1992.
48.張有義; 郭蘭生, 親媒性之膠體溶液系統. 2nd ed.; 高立圖書有限公司: 2004.
49.Bird, R. B.; Stewart, W. E.; Lightfoot, E. N., Solving Flow Problems Using a Stream Function. 2nd ed.; John Wiley & Sons, Inc.: 2006.
50.Bird, R. B.; Stewart, W. E.; Lightfoot, E. N., Creeping Flow Around a Sphere. 2nd ed.; John Wiley & Sons, Inc.: 2006.
51.王鳳英, 界面活性劑之複合性能. 5th ed.; 高立圖書有限公司: 2007.
52.Guo, X.; Rong, Z.; Ying, X., Calculation of hydrophile-lipophile balance for polyethoxylated surfactants by group contribution method. Journal of Colloid and Interface Science 2006, 298, 441-450.
53.張有義; 郭蘭生, 乳化液及泡沫. 2nd ed.; 高立圖書有限公司: 2004.
54.Bhakta, A.; Ruckenstein, E., Decay of standing foams: drainage, coalescence and collapse. Advances in Colloid and Interface Science 1997, 70, 1-124.
55.Koerner, C., Physics of Foaming. Springer: 2008.
56.Chen, J. P.; Hwang, Y. N., Polyvinyl formal resin plates impregnated with lipase-entrapped sol-gel polymer for flavor ester synthesis. Enzyme and Microbial Technology 2003, 33, 513-519.
57.Chen, Z. A.; Rui, S.; Ying, Y. R.; Fu, C. D.; Qun, Z. L., Structure and properties of biodegradable, porous starch/polyvinyl alcohol composite membrane. Journal of Clinical Rehabilitative Tissue Engineering Research 2010, 14, (34), 6328-6332.
58.Plieva, F. M.; Karlsson, M.; Aguilar, M.-R.; Gomez, D.; Mikhalovsky, S.; Galaev, I. Y.; Mattiasson, B., Pore Structure of Macroporous Monolithic Cryogels Prepared from Poly(vinyl alcohol). Journal of Applied Polymer Science 2006, 100, 1057-1066.
59.Kim, D. S.; Park, H. B.; Rhim, J. W.; Lee, Y. M., Preparation and characterization of crosslinked PVA/SiO2 hybrid membranes containing sulfonic acid groups for direct methanol fuel cell applications. Journal of Membrane Science 2004, 240, 37-48.
60.Panero, S.; Fiorenza, P.; Navarra, M. A.; Romanowska, J.; Scrosati, B., Silica-Added, Composite Poly(vinyl alcohol) Membranes for Fuel Cell Application. Journal of The Electrochemical Society 2005, 152, (12), A2400-A2405.
61.Busnaina, A. A.; Lin, H.; Moumen, N.; Feng, J. W.; Taylor, J., Particle Adhesion and Removal Mechanisms in Post-CMP Cleaning Processes. IEEE Transactions on Semiconductor Manufacturing 2002, 15, (4), 374-382.
62.Chein, R.; Liao, W., Modeling of particle removal using non-contact brush scrubbing in post-CMP cleaning processes. The Journal of Adhesiion 2006, 82, 555-575.
63.Ng, D.; Huang, P. Y.; Jeng, Y. R.; Liang, H., Nanoparticle Removal Mechanisms during Post-CMP Cleaning. Electrochemical and Solid-State Letters 2007, 10, (8), H227-H231.
64.Philipossian, A.; Mustapha, L., Effect of Mechanical Properties of PVA Brush Rollers on Frictional Forces during Post-CMP Scrubbing. Journal of The Electrochemical Society 2004, 151, (9), G632-G637.
65.Chang, Y. I.; Chan, H. C., Correlation Equation for Predicting Filter Coefficient Under Unfavorable Deposition Conditions. AIChE Journal 2008, 54, (5), 1235-1253.
66.Bai, R.; Tien, C., Particle Deposition under Unfavorable Surface Interactions. Journal of Colloid and Interface Science 1999, 218, (2), 488-499.
67.SPSS, 13.0; SPSS Inc.: Chicago, 2004.
68.Vaidyanathan, R.; Tien, C., Hydrosol deposition in granular media under unfavorable surface conditions. Chemical Engineering Science 1991, 46, (4), 967-983.
69.Chang, Y. I.; Chen, S. C.; Chan, H. C.; Lee, E., Network simulation for deep bed filtration of Brownian particles. Chemical Engineering Science 2004, 59, 4467-4479.
70.Sharma, M. M.; Yortsos, Y. C., A Network Model for Deep Bed Filtration Processes. AIChE Journal 1987, 33, (10), 1644-1653.
71.IMSL Fortran Library, 5.0; IMSL Corp.: Michigan, 2005.
72.Fedkiw, P.; Newman, J., Mass transfer at high Péclet numbers for creeping flow in a packed-bed reactor. AIChE Journal 1977, 23, (3), 255-263.
73.Payatakes, A. C.; Tien, C.; Turian, R. M., Trajectory calculation of particle deposition in deep bed filtration: Part I. Model formulation. AIChE Journal 1974, 20, (5), 889-900.
74.Chow, J. C. F.; Soda, K., Laminar Flow in Tubes with Constriction. Phys. Fluids 1972, 15, (10), 1701-1706.
75.Chiang, H. W.; Tien, C., Dynamics of deep-bed filtration. Part I: Analysis of two limiting situations. AIChE Journal 1985, 31, (8), 1349-1359.
76.Chang, Y. I.; Chen, S. C.; Lee, E., Prediction of Brownian particle deposition in porous media using the constricted tube model. Journal of Colloid and Interface Science 2003, 266, 48-59.
77.Chang, Y. I.; Whang, J. J., Deposition of Brownian particles in the presence of energy barriers of DLVO theory: effect of the dimensionless groups. Chemical Engineering Science 1998, 53, (23), 3923-3939.
78.Ramarao, B. V.; Tien, C.; Mohan, S., Calculation of single fiber efficiencies for interception and impaction with superposed Brownian motion. Journal of Aerosol Science 1994, 25, (2), 295-313.
79.Tien, C.; Ramarao, B. V., Trajectory equation of Brownian particles. 2nd ed.; Elsevier Science: 2007; p 201-210.
80.Tien, C.; Ramarao, B. V., Determination of the limiting trajectory. 2nd ed.; Elsevier Science: 2007; p 195-201.
81.Tien, C.; Ramarao, B. V., External force. 2nd ed.; Elsevier Science: 2007; p 181-183.
82.Verwey, E. J. W.; Overbeek, J. T. G., On the interaction of two parallel flat plates. Elsevier Publishers: 1948.
83.Verwey, E. J. W.; Overbeek, J. T. G., On the interaction of spherical colloidal particles. Elsevier Publishers: 1948.
84.Elimelech, M., Particle deposition on ideal collectors from dilute flowing suspensions: Mathematical formulation, numerical solution, and simulations. Separations Technology 1994, 4, (4), 186-212.
85.Prieve, D. C.; Ruckenstein, E., Effect of London forces upon the rate of deposition of Brownian particles. AIChE Journal 1974, 20, (6), 1178-1187.
86.Yao, K. M.; Habibian, M. T.; O'melia, C. R., Water and Waste Water Filtration: Concepts and Applications. Environmental Science & Technology 1971, 5, (11), 1105-1112.
87.Rajagopalan, R.; Tien, C., Trajectory analysis of deep-bed filtration with the sphere-in-cell porous media model. AIChE Journal 1976, 22, (3), 523-533.
88.Tufenkji, N.; Elimelech, M., Correlation Equation for Predicting Single-Collector Efficiency in Physicochemical Filtration in Saturated Porous Media. Environmental Science & Technology 2004, 38, (2), 529-536.
89.Elimelech, M.; O'Melia, C. R., Effect of Particles Size on Collision Efficiency in the Deposition of Brownian Particles with Electrostatic Energy Barriers. Langmuir 1990, 6, 1153-1163.
90.Elimelech, M., Predicting Collision Efficiencies of Colloidal Particles in Porous Media. Water Res. 1992, 26, (1), 1-8.
91.Vaidyanathan, R.; Tien, C., Hydrosol Deposition in Granular Beds - An Experimental Study. Chemical Engineering Communications 1989, 81, (1), 123-144.
92.Image-Pro Plus, 4.5; Media Cybernetics, Inc.: Bethesda, 2001.
93.Socrates, G., Hydroxyl Group Compounds: O-H Group. 3rd ed.; John Wiley & Sons: 2001.
94.Socrates, G., Ethers: G1-O-G2 Group. 3rd ed.; John Wiley & Sons: 2001.
95.Socrates, G., The Carbonyl Group: C=O. 3rd ed.; John Wiley & Sons: 2001.
96.Socrates, G., Polymers - Macromolecules. 3rd ed.; John Wiley & Sons: 2001.
97.Chang, Y. I.; Cheng, W. Y.; Chan, H. C., A proposed correlation equation for predicting filter coefficient under unfavorable deposition conditions. Separation and Purification Technology 2009, 65, 248-250.
98.Daniels, W., Vinyl Ester Polymers. In Encyclopedia of Polymer Science and Engineering, 2nd ed.; Kroschwitz, J. I.; Mark, H. F.; Bikales, N. M.; Overberger, C. G.; Menges, G., Eds. John Wiley & Sons, Inc.: 1989; Vol. 17, pp 393-425.
99.Klatte, F. 271381, 1912.
100.Roscher, G., Vinyl Esters. In Ullmann's Encyclopedia of Industrial Chemistry, Sixth ed.; Wiley-VCH: 2003; pp 1-11.
101.Schnizer, W. Production of vinyl esters. 1958.
102.Moiseev, I. I.; Vargaftik, M. N.; Syrkin, Y. K., Mechanism of the reaction of palladium salts with olefins in hydroxyl-containing solvents. Doklady Akademii Nauk SSSR 1960, 133, 377-380.
103.徐武軍, 乙烯的衍生物-乙醛和醋酸乙烯. 2nd ed.; 五南圖書出版股份有限公司: 2007.
104.Davidson, W. C.; Fieselmann, B. F. Recovery of rhodium from carbonylation residues. 1982.
105.Marten, F. L.; Zvanut, C. W., Manufacture of Polyvinyl Acetate for Polyvinyl Alcohol. 2nd ed.; John Wiley & Sons Ltd: 1992.
106.Baade, W.; Moritz, H. U.; Reichert, K. H., Kinetics of high conversion polymerization of vinyl acetate. Effects of mixing and reactor type on polymer properties. Journal of Applied Polymer Science 1982, 27, (6), 2249-2267.
107.Lowell, A. I.; Mageli, O. L. Polymerization of polyvinyl acetate with an initiator of t-butyl peroxypivalate and subsequent hydrolysis to produce polyvinyl alcohol. 1964.
108.Noro, K.; Morimoto, G.; Uemura, E., Solution polymerization of vinyl acetate with oxidation-reduction initiators at low temperatures. IV. Polymerization in a diisopropyl peroxydicarbonate:dimethylaniline system. Kobunshi Kagaku 1962, 19, 407-412.
109.Friedlander, H. N.; Harris, H. E.; Pritchard, J. G., Structure - property relationships of poly(vinyl alcohol). I. Influence of polymerization solvents and temperature on the structure and properties of poly(vinyl alcohol) derived from poly(vinyl acetate). Journal of Polymer Science Part A-1: Polymer Chemistry 1966, 4, (5), 649-664.
110.Harris, H. E.; Pritchard, J. G., Determination of 1,2-glycol units in polyvinyl alcohol. Journal of Polymer Science Part A: General Papers 1964, 2, (8), 3673-3679.
111.Bristol, J. E. Preparation of polyvinyl alcohol having improved color properties by treating the polyvinyl ester with an alkali metal borohydride. 1972.
112.Bristol, J. E. Preparation of polyvinyl alcohol having improved color properties by treating the polyvinyl ester with an alkaline earth metal hydride. 1972.
113.Lsshi PVA Grades and Specifications; Chang Chun Petrochemical CO., LTD.: Taipei, 2004.



連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊