(34.237.52.11) 您好!臺灣時間:2021/05/18 14:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:王嘉瑋
研究生(外文):Wang, Chie-Wei
論文名稱:拉氏清溪蟹(Candidiopotamon rathbunae)觸角腺與鰓的功能探討
論文名稱(外文):Functional Study on Gills and Antennal Glands of the Freshwater Crab, Candidiopotamon rathbunae
指導教授:林惠真林惠真引用關係
指導教授(外文):Lin, Hui-Chen
口試委員:李宗翰李奇英施習德林惠真
口試委員(外文):Lee, Tsung-HanLee, Chi-YingShih, Hsi-TeLin, Hui-Chen
口試日期:2011.May.6
學位類別:碩士
校院名稱:東海大學
系所名稱:生命科學系
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:79
中文關鍵詞:拉氏明溪蟹觸角腺滲透壓調節離子調節氫離子幫浦
外文關鍵詞:Candidiopotamon rathbunaeAntennal glandOsmoregulationIonoregulationV-type H+ ATPase
相關次數:
  • 被引用被引用:2
  • 點閱點閱:216
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
淡水蟹為高張調節者,在低離子含量的環境中維持其體液滲透壓。觸角腺與鰓為十足目甲殼類中負責滲透壓調節的器官。其中,鰓直接接觸外界,為一表面積高度特化且具有鈉鉀幫浦與氫離子幫浦的器官。鈉鉀幫浦(Na+,K+ -ATPase, NKA)與氫離子幫浦(V-type H+-ATPase,VHA)在高張調節的螃蟹中,被視為離子運輸的
驅動力來源。另外,十足目甲殼類的排泄器官-觸角腺,可能具有維持其體液滲透壓的功能。雖然觸角腺在結構上及功能上與哺乳動物的腎臟相似,但目前對於螃蟹觸角腺滲透壓調節的功能並不清楚。淡水蟹為研究螃蟹高張調節合適的模型。拉氏清溪蟹(Candidiopotamon rathbunae)為典型淡水蟹,在本實驗被選擇作為高張調
節者模型。本實驗目的有二:一、探討觸角腺是否具有離子或滲透壓調節能力;二、氫離子幫浦在離子吸收上扮演的角色。本研究的第一個部份,以去離子水設定為離子壓力的環境。螃蟹於實驗室條件馴養兩週後轉移到去離子水中一週。測量其鈉鉀幫浦活性與表現量,以及其尿液及血液滲透壓及離子組成。觸角腺鈉鉀幫浦的活性轉移後的第一天最高隨後降低。而鰓上鈉鉀幫浦活性在轉移至去離子水四天後最高。觸角腺鈉鉀幫浦表現量轉移到去離子水後下降而鰓上的鈉鉀幫浦表現量則上升。離子組成的數據顯示觸角腺吸收鈣離子、鉀離子以及氯離子,但是排出鈉離子與鎂離子。鈉鉀幫浦被標定在迷路細胞的基底膜上。顯示迷路細胞是主要負責離子調節的位置。第二個部份的研究目的為測試氫離子幫浦在離子吸收功能中所扮演的角色。利用快速增殖cDNA端點技術找出拉氏清溪蟹氫離子幫浦表現的序列。結果顯示拉氏清溪蟹具有兩種不同型的氫離子幫浦-B 次單位 (L from 以及S form)。其mRNA表現量在低氯環境中
顯著高於低鈉環境。顯示其氫離子幫浦的功能為負責氯離子吸收。由本實驗的結果推測,淡水蟹觸角腺的功能主要為離子調節而非滲透壓調節。由本研究的結果,我提出一個新的氯離子吸收模型:位於基底膜的氫離子幫浦與頂膜的HCO3–/Cl–交換者以及細胞質內的
carbonic anhydrase一同作用,負責鹼的排除以及氯離子吸收。

Freshwater crabs are hyperosmoregulators that maintain hemolymph osmolality in environments with low ion content. Antennal gland and gills are the two candidates for osmoregulation of decapod crusdaceans. Gills have increased surface contact with surrounding water. In gills of hyperosmoregulatory crabs, Na+,K+ -ATPase (NKA) and V-type H+-ATPase (VHA) in gills are considered as the driving force of ion uptake from ambient water. The antennal gland, the excretory organ of decapod crustaceans, may also maintain osmolality of crab hemolymph. Although antennal gland structure and function are similar to mammalian kidneys, the osmoregulatory ability of crabs remains unclear. The freshwater crab, Candidiopotamon rathbunae, was chosen for this study because it is a good model for studying hyperosmoregulation in crustaceans. The purposes were to investigate the iono- or osmo-regulatory ability of the antennal gland and the function of VHA in ion absorption. Deionized water (DW) was the ionic stressor. I recorded NKA activity, ionic composition, and osmolality of hemolymph and urine. In DW, NKA activity of the antennal gland and gills were highest on first and fourth days, respectively. Increased NKA activity indicates increased ion uptake rate. Candidiopotamon rathbunae produced isosmotic, but not isoionic, urine. Ionic concentrations of hemolymph in DW remained constant in the first four days. Ion composition of urine showed the antennal gland reabsorbed Ca2+, K+, and Cl–, but secreted Na+ and Mg2+. The NKA was then localized in the basolateral membrane of labyrinthine cells. To test VHA function in osmoregulation, I cloned two isoforms of VHA B-subunit from gills of C. rathbunae (L and S forms). The mRNA of both isoforms of VHA increased in gill 5 and gill 9 in crabs acclimated in low Cl– artificial freshwater for 96 hours, but not those acclimated in the low Na+ artificial water. Therefore, VHA participated in Cl– uptake in C. rathbunae particularly. The antennal gland in this freshwater crab has the ability to regulate ions but not osmolality. Based on these results, I propose a new model of Cl– uptake in freshwater crabs: VHA in the basolateral membrane is responsible, with apical HCO3–/Cl– exchanger and cytoplasmic carbonic anhydrase, for base secretion and Cl– uptake.
Contents
摘要---------------------------------------------------------------------------------1
Abstract-----------------------------------------------------------------------------3
Introduction------------------------------------------------------------------------5
Osmoregulation in brachyuran crabs-------------------------------------------5
Hyperosmoregulation in crabs---------------------------------------------------5
Osmoregulatory organs in crustaceans-----------------------------------------7
Gills---------------------------------------------------------------------------------8
Antennal gland-------------------------------------------------------------------10
Molecular mechanisms in gills of hyperosmoregulation-------------------11
Na+,K+-ATPase------------------------------------------------------------------12
V-type H+-ATPase---------------------------------------------------------------13
Candidiopotamon rathbunae---------------------------------------------------14
Purposes---------------------------------------------------------------------------15
Material and methods-----------------------------------------------------------16
Experimental design-------------------------------------------------------------16
Candidiopotamon rathbunae collection--------------------------------------17
Acclimation regime--------------------------------------------------------------18
Muscle water content------------------------------------------------------------18
Protein extraction----------------------------------------------------------------19
NKA activity---------------------------------------------------------------------20
Western blot----------------------------------------------------------------------21
Paraffin section------------------------------------------------------------------22
Immunohistochemistry---------------------------------------------------------22
Urine and hemolymph collection---------------------------------------------23
Osmolality measurement-------------------------------------------------------24
Ion concentrations in hemolymph and urine---------------------------------24
RNA extraction------------------------------------------------------------------25
mRNA isolation-----------------------------------------------------------------26
Rapid amplified cDNA ends (RACE) PCR----------------------------------27
cDNA synthesis------------------------------------------------------------------27
PCR--------------------------------------------------------------------------------28
Cloning----------------------------------------------------------------------------28
Qantitative RT-PCR-------------------------------------------------------------29
Data analysis---------------------------------------------------------------------29
Results-----------------------------------------------------------------------------30
Muscle water content and Osmolality in hemolymph and urine----------30
Ion concentrations in hemolymph and urine---------------------------------31
Antennal gland structure and NKA localization-----------------------------33
NKA activity---------------------------------------------------------------------34
NKA abundance-----------------------------------------------------------------34
VHA sequences------------------------------------------------------------------34
Expression of two VHA isoforms in different organs----------------------35
Cluster of VHA------------------------------------------------------------------36
VHA expression in LNW and LCW------------------------------------------37
Discussion------------------------------------------------------------------------38
Structure of C. rathbunae antennal gland ------------------------------------39
Muscle water content------------------------------------------------------------40
Osmolality in hemolymph and urine------------------------------------------41
Ion concentrations---------------------------------------------------------------42
NKA abundance and activity---------------------------------------------------44
VHA sequence in C. rathbunae------------------------------------------------46
Cluster of VHA of crustaceans------------------------------------------------47
VHA isoforms expression in different conditions--------------------------47
Conclusion------------------------------------------------------------------------50
Perspectives-----------------------------------------------------------------------50
References------------------------------------------------------------------------51
Tables-----------------------------------------------------------------------------60
Figures----------------------------------------------------------------------------65

Cameron, J. N. and Batterton, C. V. (1978). Antennal gland function in the freshwater blue crab, Callinectes sapidus: water, electrolyte, acid-base and ammonia excretion. J. Comp. Physiol. 123B, 143–148.
Charmantier, R., Charmantier-Daures, M. and Towle, D. W. (2009). Osmotic and ionic regulation in aquatic arghropods. In Osmotic and ionic regulation (ed. D. Evans), pp. 165–230. CRC press. Boca Raton.
Chung, K. F. and Lin, H. C. (2006). Osmoregulation and Na+, K+-ATPase expression in osmoregulatory organs of Scylla paramamosain. Comp. Biochem. Physiol. 144, 48 –57.
Cumberlidge, N. and Ng, P. K. L. (2009). Systemic, evolution, and biogeography of freshwater crabs. In Decapod Crustacean Phylogenetics (ed. J. W. Martin, K. A. Crandall, and D. L. Felder), pp. 491–509. CRC Press. Boca Raton.
De Vries, M. C., Wolcott, D. L. and Holliday, C. W. (1994). High ammonia and low pH in the urine of the gost crab, Ocypode quadrata. Biol. Bull. 186, 342–348.
Foster, C., Amado, E. M., Souza, M. M. and Freire, C. A. (2010). Do osmoregulators have lower capacity of muscle water regulation than osmoconformers? A study on decapod crustaceans. J. Exp. Zool. 313A, 80–94.
Freire, C. A., Cavassin, F., Rodrigues, E. N., Torres, A. H. and McNamara, J. C. (2003). Adaptive patterns of osmotic and ionic regulation, and the invasion of freshwater by the palaemonid shrimps. Comp. Biochem. Physiol. 136A, 771–778.
Freire R. C., Onken H. and McNamara, J. C. (2008). A structure–function analysis of ion transport in crustacean gills and excretory organs. Comp. Biochem. Physiol. 151A, 272–304.
Genovese, G., Ortiz, N., Urcola, M. R. and Luquet, C. M. (2005). Possible role of carbonic anhydrase, V–H+–ATPase, and Cl–/HCO3– exchanger in electrogenic ion transport across the gills of the euryhaline crab Chasmagnathus granulatus. Comp. Biochem. Physiol. 142A, 362–369.
Goodman, S. H. and Cavey, M. J. (1990). Organization of a phyllobranchiate gill from the green shore crab Carcinus maenas (Crustacea, Decapoda). Cell Tissue Res. 260, 495–505.
Harris, R. R. (1975). Urine production rate and urinary sodium loss in the freshwater crab Potamon edulis. J. Comp. Physiol. 96, 143–153.
Harris, R. R. and Micaleff, H. (1991). Osmotic and ionic regulation in Potamon edulis, a fresh water crabfrom Malta. Comp. Biochem. Physiol. 38A, 127–129.
Henry, R.P. (1994). Morphological, behavioral, and physiological characterization of bimodal breathing crustaceans. Am. Zool. 34, 205–215.
Holliday, C.W. (1980). Magnesium transport by the urinary bladder of the crab, Cancer magister. J. Exp. Biol. 85, 187–201.
Hwang, P.P. and Lee, T.H. (2007). New insights into fish ion regulation and mitochondrion-rich cells. Comp. Biochem. Physiol. 148A, 479–497.
Katoh, F., Hyodo, S. and Kaneko, T. (2003). Vacuolar-type proton pump in the basolateral plasma membrane energizes ion uptake in branchial mitochondria-rich cells of killifish Fundulus heteroclitus, adapted to a low ion environment. J. Exp. Biol. 206, 793–803.
Kirschner, L. B. (2004). The mechanism of sodium chloride uptake in hyperregulating aquatic animals. J. Exp. Biol. 207, 1439–1452.
Khodabandeh, S., Charmantier, G., Blasco, C., Grousset, E. and Charmantier-Daures, M. (2005). Ontogeny of the antennal glands in the crayfish Astacus leptodactylus (Crustacea, Decapoda): anatomical and cell differentiation. Cell Tissue Res. 319, 153–165.
Khodabandeh, S., Charmantier, G. and Charmantier-Daures, M. (2005). Ultrastructural studies and Na+,K+-ATPase immunolcalization in antennal urinary glands of the lobster Homarus gammarus. J. Histochem. Cytochem. 53, 1203–1214.
Khodabandeh, S., Kutnik, M., Aujoulat, F., Charmantier, G. and Charmantier-Daures, M. (2006). Immunolocalization of Na+/K+-ATPase in osmoregulatory organs during the embryonic and postembryonic development of the lobster Homarus gammarus. J. Crust. Biol. 26, 515–523.
Li, T. D., Roer, R., Vana, M., Pate, S. and Check, J. (2006). Gill area, permeability and Na+, K+-ATPase activity as a function of size and salinity in the blue crab, Callinectes sapidus. J. Exp. Zool. 305, 233–245.
Lin, S-C., Liou, C-H. and Cheng, J-H. (2000) The role of the antennal glands in ion and body volume regulation of cannulated Penaeus monodon reared in various salinity conditions. Comp. Biol. Physiol. 127, 121–129.
Lin, H. C., Su, Y. C. and Su, S. H. (2002). A comparative study of osmoregulation in four fiddler crabs (Ocypodidae: Uca). Zool. Sci. 19, 643–650.
Lucu, C. and Towle, D. W. (2003) Na++K+-ATPase in gills of aquatic crustacea. Comp. Biochem. Physiol. 135A, 195–214.
Lucu, C. and Filk, G. (1999). Na+,K+-ATPase and Na+/Ca2+ exchange activities in gills of hyperregulating Carcinus maenas. Am. J. Physiol. 276, R490–R499.
Luquet, C. M., Postel, U., Halperin, J., Urcola, M. R., Marques, R. and Siebers, D. (2002). Transepithelial potential differences and Na+ flux in isolated perfused gills of the crab Chasmagnathus granulatus (Grapsidae) acclimated to hyper- and hypo-salinity. J. Exp. Biol. 205, 71–77.
Mantel, L. H. and Farmer, L. L. (1983). Osmotic and ionic regulation. In Internal Anotomy and Physiological Regulation (Ed. Mantel, L.H.), pp. 53–161. Academic Press. New York.
Morris, S. (2001). Neuroendocrine regulation of osmoregulation and the evolution of air-breathing in decapod crustaceans. J. Exp. Biol. 204, 979–989
Morris, S. and Ahern, M.D. (2003). Regulation of urine reprocessing in the maintenance of sodium and water balance in the terrestrial Christmaas Island red crab Gecarcoidea natalis investigated under field conditions. J. Exp. Biol. 206, 2869–2881.
Morris, S. and Van Aardt, W. J. (1998) Salt and water relations, and nitrogen excretion, in the amphibious African freshwater crab Potamonautes warreni. J. Exp. Biol. 201, 883–893.
Ng P. K. L. Guinot D., and Davie P. J. F. (2008 ) Systema brachyurorum: part I. an annotated checklist of txtant brachyuran crabs of the world. Raff. Bull. Zool. 17: 1–286
Onken, H. (1999). Active NaCl absorption across split lamellae of posterior gills of Chinese crabs (Eriocheir sinensis) adapted to different salinities. Comp. Biochem. Physiol. 123A, 377–384.
Onken, H. and McNamara, J. C. (2002). Hyperosmoregulation in the red freshwater crab Dilocarcinus pagei (Brachyura, Trichodactylidae): structural and functional asymmetries of the posterior gills. J. Exp. Biol. 205, 167–175
Onken, H. and Putzenlechner, M. (1995). A V-ATPase drives active, electrogenic and Na+-independent Cl- absorption across the gills of Eriocheir sinensis. J. Exp. Biol. 198, 767–774.
Onken, H., Graszynski, K. and Zeiske, W. (1991). Na+-independent, electrogenic Cl– uptake across the posterior gills of the Chinese crab (Eriocheir sinensis): voltage-clamp and microelectrode studies. J. Compl. Physiol. 161B, 294–301.
Onken, H., Tresguerres, M. and Luquet, C. M. (2003). Active NaCl absorption across posterior gills of hyperosmoregulating Chasmagnathus granulatus. J. Exp. Biol. 206, 1017–1023.
Parks, S. K., Tresguerres, M. and Goss, G. G. (2008). Theoregical considerations underlying Na+ uptake mechanisms in freshwater fishes. Comp. Biochem. Physiol. 148C, 411–418.
Péqueux, A. (1995). Osmotic regulation in crustaceans. J. Crustac. Biol. 15, 1–60.
Peterson, D. R. and Loizzi, R. F. (1974). Ultrastructure of the crayfish kidney–coelomosac, labyrinth, nephridial canal. J. Morph. 142, 241–264.
Piermarini, P. M. and Evans, D. H. (2001). Immunochemical analysis of the vacuolar proton-ATPase B-subunit in the gills of a euryhaline stingray (Dasyatis sabina): effects of salinity and relation to Na+/K+-ATPase. J. Exp. Biol. 204, 3251–3259.
Riegel, J. A. (1963). Micropuncture studies of chloride concentration and osmotic pressure in the crayfish antennal gland. J. Exp. Biol. 40, 487–492.
Riegel, J. A. (1968). Analysis of the distribution of sodium, potassium and osmotic pressure in the urine of crayfishes. J. Exp. Biol. 48, 587–596.
Sarver, G. L., Flynn, M. A. and Holliday, C. W. (1994). Renal Na,K-ATPase and osmoregulation in the crayfish Procambarus clarkii, Comp. Biochem. Physiol. 107A, 349–356.
Schmidt-Nielsen, B., Gerta, K. H. and Davis, L. E. (1968). Excretion and Ultrastructure of the antennal gland of the fiddler crab Uca mordax. J. Morph. 125, 473–496.
Shaw, J. (1959). Salt and water balance in the east African fresh-water crab, Potamon niloticus (M. EDW.) J. Exp. Biol. 36, 157–176.
Shaw, J. (1961). Studies on ionic regulation in Carcinus maenas (L.). I. Sodium glance. J. Exp. Biol. 38, 135–152.
Shih H-T and Ng P. K. L. (2011) diversity and biogeography of freshwater crabs (Crustacea: Brachyura: Potamidae, Gecarcinucidae) from East Asia. Syst. Biodiversity. 9: 1–16
Shih, H.-T., Hung, H.-C., Schubart, C.D., Chen, C.A. and Chang, H.-W. (2006). Intraspecific genetic diversity of the endemic freshwater crab Candidiopotamon rathbunae (Decapoda, Brachyura, Potamidae) reflects five million years of the geological history of Taiwan. J. Biogeogr. 33, 980–989.
Taylor, E. W., Bulter, P. J. and Al-Wassia, A. (1977) The effect of a decrease in salinity on respiration, osmoregulation and activity of the shore crab Carcinus maenas (L.) at different acclimation temperatures. J. Comp. Physiol. 119B, 155–170.
Tresguerres, M., Katoh, F., Fenton, H., Jasinska, E. and Goss, G. G. (2005). Regulation of branchial V-H+-ATPase, Na+/K+-ATPase and NHE2 in response to acid and base infusions in the Pacific spiny dogfish (Squalus acanthias). J. Exp. Biol. 208, 345–354.
Tresguerres, M., Katoh, F., Orr, E., Parks, S. K. and Goss, G. G. (2006). Chloride uptake and base secretion in freshwater fish: a transepithelial ion-transport metabolon? Physiol. Biochem. Zool. 79, 981–996.
Tresguerres, M., Parks, S. K., Katoh, F. and Goss, G. G. (2006). Microtubule-dependent relocation of branchial V-H+-ATPase to the basolateral membrane in the Pacific spiny dogfish (Squalus acanthias): a role in base secretion. J. Exp. Biol. 209, 599–609.
Tresguerres, M., Parks, S. K., Sabatini S. E., Goss, G. G. and Luquet C. M. (2008). Regulation of ion transport by pH and [HCO3–] in isolated gills of the crab Neohelice (Chasmagnathus) granulata. Am. J. Physiol. Regul. Integr. Comp. Physiol. 294, R1033–R1043.
Tsai, J. R. and Lin, H. C. (2007). V-type H+-ATPase and Na+,K+-ATPase in the gills of 13 euryhaline crabs during salinity acclimation. J. Exp. Biol. 210, 620–627.
Tseng, T. P. (2008). The osmoregulatory pattern of Na+,K+-ATPase and V-type H+-ATPase in gill epithelia of freswater crab Candidiopotamon rathbunae. Master thesis of Tunghai University. (In Chinese).
Weihrauch, D., Becker, W., Postel, U., Riestenpatt, S. and Siebers, D. (1998). Active excretion of ammonia across the gills of the shore crab Carcinus maenas and its relation to osmoregulatory ion uptake. J. Comp. Physiol. 168B, 364–376.
Weihrauch, D., Ziegler, A., Siebers, D. and Towle, D. W. (2001). Molecular characterization of V-type H+-ATPase (B-subunit) in gills of euryhaline crabs and its physiological role in osmoregulatory ion uptake. J. Exp. Biol. 204, 25–37.
Weihrauch, D., Ziegler, A., Siebers, D. and Towle, D. W. (2002). Active ammonia excretion across the gills of the green shore crab Carcinus maenas: participation of Na+/K+-ATPase, V-type H+-ATPase and functional microtubules. J. Exp. Biol. 205, 2765–2775.
Weihrauch, D., McNamara J. C., Towle D. W. and Onken, H. (2004). Ion-motive ATPases and active, transbranchial NaCl uptake in the red freshwater crab, Dilocarcinus pagei (Decaapoda, Trichodactylidae). J. Exp. Biol. 207, 4623–4631.
Wheatly, M. G. and Henry, R. P. (1987). Branchial and antennal gland Na+/K+-dependent ATPase and carbonic anhydrase activity during salinity acclimation of the euryhaline crayfish Pacifastacus leniusculus. J. Exp. Biol. 133, 73–86.
Zare, S. and Greenaway, P. (1998). The effect of moulting and sodium depletion on sodium transport and the activities of Na+K+,ATPase, and V-ATPase in the freshwater crayfish Cherax destructor (Crustacea: Parastacidae). Comp. Biochem. Physiol. 119A, 739–745.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 王仕圖(2007)。社區型非營利組織資源動員與整合:以社區發展協會為例。臺灣社會福利學刊,5卷2期,頁103-137。
2. 甘炳光(1995)。社區照顧概念與推行原則。社區發展季刊,69期,頁132-141。
3. 王培勳(2002)。我國社區發展工作之回顧。社區發展季刊,100期,頁44-59。
4. 王育敏(2006)。非營利組織建構社會資源之探討。社區發展季刊,115期,頁150-160。
5. 吳崇旗、周靈山(2001)。落實體育運動場館「使用者付費」觀念之探討。大專體育,56期,頁59-63。
6. 吳淑瓊、莊坤洋(2001)。在地老化:臺灣二十一世紀長期照護的政策方向。臺灣公共衛生雜誌,20卷3期,頁192-201。
7. 林明禛(2006)。從多元資源網絡談老人社區照顧。社區發展季刊,115期,頁141-149。
8. 林淑馨(2008)。社福型非營利組織與政府在服務輸送互動上之困境分析。社區發展季刊,122期,頁47-61。
9. 林勝義(2004)。從社區評鑑探討臺灣社區發展的走向。社區發展季刊,107期,頁52-64。
10. 張則堯(1990)。使用者付費原則之概念與其適用。保險專刊,21期,頁220-221。
11. 張英陣(1995)。第三部門與社會福利政策分析。社區發展季刊,70 期,頁144-159。
12. 張英陣(2004)。社區照顧與非營利組織。社區發展季刊,106 期,頁60-97。
13. 陳世明、陳柏宗(2006)。社區組織參與老人社區照顧之研究:以台南市長榮社區為例。社會政策與社會工作學刊,10卷1期,頁49-113。
14. 陳紫娟(2005)。「使用者付費」在「學校運動場地設施開放」之應用。國民體育季刊,144期,頁90-95。
15. 陳燕禎(2005)。社區老人照顧支持體系及政策之探討。社區發展季刊,110期,頁158-175。