跳到主要內容

臺灣博碩士論文加值系統

(98.84.18.52) 您好!臺灣時間:2024/10/06 11:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳盈之
研究生(外文):Chen, Yin-Zhi
論文名稱:陳盈之
論文名稱(外文):Establishment and characterization of mouse embryonic germ cell lines
指導教授:羅能文
指導教授(外文):Lo, Neng-Wen
口試委員:朱志成鄭登貴吳信志胡仲祺
口試委員(外文):Ju, Jyh-CherngCheng, Teng-KueiWu, Shinn-ChihHu, Chung-Chi
口試日期:2011-07-27
學位類別:碩士
校院名稱:東海大學
系所名稱:畜產與生物科技學系
學門:農業科學學門
學類:畜牧學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:79
中文關鍵詞:胚胎生殖細胞GSK3抑制劑MEK抑制劑始基生殖細胞
外文關鍵詞:Embryonic germ cellGSK3 inhibitorMEK inhibitorPrimordial germ cell
相關次數:
  • 被引用被引用:0
  • 點閱點閱:316
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
始基生殖細胞(primordial germ cell, PGC)係生殖細胞分化成為雌性或雄性配子(gamete)過程中最初始之細胞。PGC無法於一般體外培養條件下存活超過一周。增添白血病抑制因子 (leukemia inhibitory factor, LIF)、幹細胞因子(stem cell factor, SCF)及FGF2 (basic fibroblast growth factor)於培養液並培養於飼養層細胞(feeder layer)上,則可使具單一分化能力之PGC轉變為具分化多能性之胚生殖細胞(embryonic germ cell, EGC)。本論文主要目的為探討小鼠EGC細胞株建立之培養條件並分析細胞株之特性。試驗一旨在測試PGC轉變為EGC之培養條件;分離自11.5 dpc (days post coitum)之小鼠PGC,以1,500 cells/cm2之密度培養於含有新鮮STO飼養層細胞上,並供給不同濃度之LIF、 forskolin(FK)及FGF2。結果顯示小鼠PGC於培養7日後,類EGC之產率為0.1-0.28%。經免疫細胞染色結果顯示此等EGC不僅具備表現鹼性磷酸酶 (alkaline phosphatase, AP),與具備能力表現多能性細胞標記蛋白,諸如:Oct4、Nanog及SSEA1等。然在此等培養系統下其產生之類EGC僅能被培養至第3代。試驗二除探討GSK3(glycogen-synthase-kinase-3)與MEK抑制劑(inhibitor)之添加,對於EGC產率之影響外,並嘗試於抑制劑系統下建立EGC細胞株。抑制劑處理組之PGC,經培養於含有LIF、FK與FGF2環境下48 h後,更換為含有LIF、FK、MEK inhibitor與GSK3 inhibitor(2i)之培養液後培養至第7天。篩選後發現對照組僅得到一株類EGC,而試驗組(2i組)則得到12株;兩者經繼代培養後且分別皆可維持至第6代。經細胞特性分析結果顯示,2i組之類EGC具AP表現;進一步且RT-PCR結果且證明類EGC不僅能順利表現oct4、sox2、stat3、c-myc及klf4等多能性基因,且能表現mvh與stella等生殖細胞標記基因。進一步藉由免疫細胞染色分析結果,且證明彼等細胞液充分具備表現包括Oct4、Sox2、Nanog, Mvh及Stella等蛋白質。此外,於2i系統下所建立之EGC,於適當之環境下更具備表現形成具三胚層之類胚體(embryoid body, EB)之能力。綜上所述,小鼠PGC可於LIF、FK、FGF2與2i培養系統下可被順利誘導形成具備EGC特徵之類細胞株;惟欲證明此等細胞株確為EGC,則將之誘導形成畸胎瘤(teratoma)與透過嵌合(chimera)測試以證明其確有產生嵌合體小鼠(chimera mouse)之能力之試驗有待進行。
Primordial germ cells (PGCs) are the primitive forms of germ cells, which ultimately differentiate into male and female gametes. PGCs cannot survive under in vitro culture conditions for more than one week. However, they would transform intopluripotent embryonic germ cells (EGCs) in vitro if they are cocultured with feeder cells supplemented with leukemia inhibitory factor (LIF), stem cell factor (SCF), basic fibroblast growth factor (FGF2). The primary goal of this study was to establish mouse embryonic germ cell lines under various conditions and characterizethem. In Experiment 1, to testthe culture conditions capable of convertingPGCs into EGCs, mouse PGCs derived from 11.5 dpc (days post coitum) mouse fetus were seeded by 1,500 cells/cm2 on STO feeders in medium supplemented with various concentrations of LIF, forskolin (FK) and FGF2. EG-like colonies were observed 4 days post the initial culture and after 7 days of culture the formation rate of EG-like colonies reached0.1-0.28%. Those EG-like cells expressed pluripotency markers alkaline phosphatase (AP) and Oct4, Nanog and SSEA1 on protein levelsand were maintained to passage 3 only. In Experiment 2, GSK3 and MEK inhibitors were added into the culture medium to examine the efficiency of EG-like colony formation. Mouse PGCs were cultured in medium supplemented with LIF, FK and FGF2 for 48 h, and then in the medium containing LIF, FK, MEK inhibitor and GSK3 inhibitor (2i) for additional five days. The EG-like cells which reprogram completely had been selected by trypsin. Twelve EG-like colonies were selected by the2i culture system as opposed to one colony by the untreated control system. All the EG-like cells can be maintained over 6 passages. The EG-like cells derived from 2i treatments expressed AP, pluripotency and germ cell marker genes oct4, sox2, stat3, c-myc, klf4, mvh and stella on RNA levels ; Oct4, Sox2, Nanog, Mvh and Stella on protein levels. Furthermore, the tested clone, N2, showed the capability of forming embryoid bodies (EBs) as evident by the expression of three germ layer marker genes. Taken together, several EG-like cell lines had been established from mouse PGCs with the presence of LIF, FK, FGF2, and GSK3 and MEK inhibitors.The full potency of these EGC-line clones awaits further confirmation by testing their capability in teratoma formation and in chimera formation via germline transmission.
目 次
頁次
摘要
文獻檢討…………………………………………………………………………1
前言…………………………………………………………………………………2
始基生殖細胞之發生………………………………………………………………2
胚胎生殖細胞之背景及其特性介紹………………………………………… 4
一 EGC之建立歷史及現況………………………………………………4
二 PGC與 EGC之異同………………………………………………7
三 促進PGC轉變為EGC之因子…………………………………………7
四 纖維母細胞生長因子2促進細胞自我更新……………………………9
五 Forskolin提升細胞內cAMP之濃度…………………………………10
六 Blimp1調控細胞之基因外修飾……………………………………….10
七 Trichostatin A可協助FGF2協助PGC轉變為EGC……………………10
八 訊息傳導路逕抑制劑之添加促進EGC之產生…………………………11
研究目的…………………………………………………………………………11
研究試驗…………………………………………………………………………14
試驗一 小鼠PGC之分離與體外培養條件之測試………………………………15
前言……………………………………………………………………15
材料與方法…………………………………………………………………16
結果……………………………………………………………………21
試驗二 添加GSK與MEK抑制劑以改善小鼠類EGC之培養模式與建立類
EGC細胞株………………………………………………………………27
前言…………………………………………………………………………27
試驗設計………………………………………………………………………28
材料與方法…………………………………………………………………28
結果……………………………………………………………………40
討論……………………………………………………………………56
結論……………………………………………………………………58
附錄一…………………………………………………………………………59
參考文獻…………………………………………………………………………65


Ancelin, K., U. C. Lange, P. Hajkova, R. Schneider, A. J. Bannister, T. Kouzarides and M. A. Surani. 2006. Blimp1 associates with Prmt5 and directs histone arginine methylation in mouse germ cells. Nat. Cell Biol. 8:623-630.
Chuma, S., and N. Nakatsuji. 2001. Autonomous transition into meiosis of mouse fetal germ cells in vitro and its inhibition by gp130-mediated signaling. Dev. Biol. 229:468-479.
De Felici, M., S. Dolci and M. Pesce. 1992. Cellular and molecular aspects of mouse primordial germ cell migration and proliferation in culture. Int. J. Dev. Biol. 36:205-13.
De Felici, M., S. Dolci and M. Pesce. 1993. Proliferation of mouse primordial germ cells in vitro: a key role for cAMP. Dev. Biol. 157:277-80.
Dolci, S., D. E. Williams, M. K. Ernst, J. L. Resnick, C. I. Brannan, L. F. Lock, S. D. Lyman, H. S. Boswell and P. J. Donovan. 1991. Requirement for mast cell growth factor for primordial germ cell survival in culture. Nature 352:809-811.
Donovan, P. J. 1994. Growth factor regulation of mouse primordial germ cell development. Curr. Top Dev. Biol. 29:189-225.
Donovan, P. J. and M. P. De Miguel . 2003.Turning germ cells into stem cells. Curr. Opin. Genet. Dev. 13:463-471.
Donovan, P. J., D. Stott, L. A. Cairns, J. Heasman and C. C. Wylie. 1986. Migratory and postmigratory mouse primordial germ cells behave differently in culture. Cell 44:831-838.
Duester, G. 2008. Retinoic acid synthesis and signaling during early organogenesis. Cell 134:921-931.
Durcova-Hills, G. and A. Surani. 2008. Reprogramming Primordial Germ Cells (PGC) to Embryonic Germ (EG) Cells. Curr. Protoc. Stem Cell Biol. 1:Unit1A.3.
Durcova-Hills, G., I. R. Adams, S. C. Barton, M. A. Surani and A. McLaren. 2006. The role of exogenous fibroblast growth factor-2 on the reprogramming of primordial germ cells into pluripotent stem cells. Stem Cells 24:1441-1449.
Durcova-Hills, G., F. Tang, G, Doody, R. Tooze and M. A. Surani. 2008. Reprogramming primordial germ cells into pluripotent stem cells. PLoS One. 3:e35.
Durcova-Hills, G., T. Tokunaga, S. Kurosaka, M. Yamaguchi, S. Takahashi and H. Imai. 1999-2000. Immunomagnetic isolation of primordial germ cells and the establishment of embryonic germ cell lines in the mouse. Cloning 1: 217-24.
Geijsen, N., M. Horoschak, K. Kim, J. Gribnau, K. Eggan and G. Q. Daley. 2004. Derivation of embryonic germ cells and male gametes from embryonic stem cells. Nature 8:106-107.
Ginsburg, M., M. H. Snow and A. McLaren. 1990. Primordial germ cells in the mouse embryo during gastrulation. Development 110:521-528.
Godin, I., R. Deed, J. Cooke, K. Zsebo, M. Dexter and C. C. Wylie. 1991. Effects of the steel gene product on mouse primordial germ cells in culture. Nature 352:807-809.
Gyory, I., J. Wu, G. Fejer, E. Seto and K. L. Wright. 2004. PRDI-BF1 recruits the histone H3 methyltransferase G9a in transcriptional silencing. Nature Immunol. 5:299-308.
Hajkova, P., S. Erhardt, N. Lane, T. Haaf and O. El-Maarri. 2002. Epigenetic reprogramming in mouse primordial germ cells. Mech. Dev. 117:15-23.
Hara, K., M. Kanai-Azuma, M. Uemura, H. Shitara, C. Taya, H. H., Kawakami, N. Tsunekawa, M. Kurohmaru and Y. Kanai. 2009. Evidence for crucial role of hindgut expansion in directing proper migration of primordial germ cells in mouse early embryogenesis. Dev. Biol. 330:427-39.
Hamazaki, T., S. M. Kehoe, T. Nakano and N. Terada. 2006. The Grb2/Mek pathway represses Nanog in murine embryonic stem cells. Mol. Cell Biol. 26:7539-7549.
Horii, T., Y. Nagao, T. Tokunaga and H. Imai. 2003. Serum-free culture of murine primordial germ cells and embryonic germ cells. Theriogenology 59:1257-1264.
Kimura, T., A. Suzuki, Y. Fujita, K. Yomogida, H. Lomeli, N. Asada, M. Ikeuchi, A. Nagy, T. W. Mak and T. Nakano. 2003. Conditional loss of PTEN leads to testicular teratoma and enhances embryonic germ cell production. Development 130:1691-1700.
Koshimizu, U., T. Taga, M. Watanabe, M. Saito, Y. Shirayoshi, T. Kishimoto and N. Nakatsuji. 1996. Functional requirement of gp130-mediated signaling for growth and survival of mouse primordial germ cells in vitro and derivation of embryonic germ (EG) cells. Development 122:1235-1242.
Koubova, J., D. B. Menke, Q. Zhou, B. Capel, M. D. Griswold and D. C. Page. 2006. Retinoic acid regulates sex-specific timing of meiotic initiation in mice. Proc. Natl. Acad. Sci. U S A. 103:2474-2479.
Labosky, P. A., D. P. Barlow and B. L. Hogan, 1994. Embryonic germ cell lines and their derivation from mouse primordial germ cells. Ciba Foundation Symposium 182:157-168; discussion 168-178.
Lawson, K. A., and W. L. Hage. 1994. Clonal analysis of the origin of primordial germ cells in the mouse. Ciba. Found. Symp. 182:68-84.
Leitch, H. G., K. Blair, W. Mansfield, H. Ayetey, P. Humphreys, J. Nichols, M. A. Surani and A. Smith. 2010. Embryonic germ cells from mice and rats exhibit properties consistent with a generic pluripotent ground state. Development 137:2279-2287.
Matsui, Y., D. Toksoz, S. Nishikawa, D. Williams, K. Zsebo and B. L. Hogan. 1991. Effect of steel factor and leukaemia inhibitory factor on murine primordial germ cells in culture. Nature 353:750-752.
McCarrey, J. R., K. C. Hsu, E. M. Eddy, R. R. Klevecz and J. L. Bolen. 1987. Isolation of viable mouse primordial germ cells by antibody-directed flow sorting. J. Exp. Zool. 242:107-111.
Metzger, H., and E. Lindner. 1981. The positive inotropic-acting forskolin, a potent adenylate cyclase activator. Arzneimittelforschung 31:1248-1250.
Molyneaux, K., and C. Wylie. 2004. Primordial germ cell migration. Int. J. Dev. Biol. 48:537-544.
Moon, R. T., B. Bowerman, M. Boutros and N. Perrimon. 2002. The promise and perils of Wnt signaling through β-catenin. Science 296:1644-1646.
Mstsui, Y., K. Zsebo and B. L. M. Hogan. 1992. Derivation of pluripotent embryonic stem cells from murine primordial germ cells. Cells 70:841-847.
Muller, A. J., A. K. Teresky and A. J. Levine. 2000. A male germ cell tumorsusceptibility-determining locus, pgct1, identified on murine chromosome 13. Proc. Natl. Acad. Sci. USA 97:8421-8426.
Nayernia, K., J. Nolte, H. W. Michelmann, J. H. Lee, K. Rathsack, N. Drusenheimer, A. Dev, G. Wulf, I. E. Ehrmann, D. J. Elliott, V. Okpanyi, U. Zechner, T. Haaf, A. Meinhardt and W. Engel. 2006. In vitro-differentiated embryonic stem cells give rise to male gametes that can generate offspring mice. Dev. Cell 11:125-132.
Ohinata, Y., B. Payer, D. O'Carroll, K. Ancelin, Y, Ono, M. Sano, S. C. Barton, T. Obukhanych, M. Nussenzweig, A. Tarakhovsky, M. Saitou and M. A. Surani. 2005. Blimp1 is a critical determinant of the germ cell lineage in mice. Nature 436:207-213.
Ohkubo, Y., Y. Shirayoshi and N. Nakatsuji. 1996. Autonomous regulation of proliferation and growth arrest in mouse primordial germ cells studied by mixed and clonal cultures. Exp. Cell Res. 222:291-297.
Pesce, M., and M. De Felici. 1995. Purification of mouse primordial germ cells by MiniMACS magnetic separation system. Dev. Biol. 170:722-725.
Pesce, M., M. G. Farrace, M. Piacentini, S, Dolci and M. De Felici. 1993. Stem cell factor and leukemia inhibitory factor promote primordial germ cell survival by suppressing programmed cell death (apoptosis). Development 118:1089-1094.
Ren, B., K. J. Chee, T. H. Kim and T. Maniatis. 1999. PRDI-BFI-Blimp-1 repression is mediated by corepressors of the Groucho family of proteins. Genes Dev. 13:125-137.
Resnick, J. L., L. S. Bixler, L. Cheng and P. J. Donovan. 1992. Long-term proliferation of mouse primordial germ cells in culture. Nature 359:550-551.
Runyan, C., K. Schaible, K. Molyneaux, Z. Wang, L. Levin and C. Wylie. 2006. Steel factor controls midline cell death of primordial germ cells and is essential for their normal proliferation and migration. Development 133:4861-4869.
Saitou, M. 2009. Germ cell specification in mice. Curr. Opin. Genet. Dev. 19:386-395.
Saitou, M., S. C. Barton and M. A. Surani. 2002. A molecular programme for the specification of germ cell fate in mice. Nature 418:293-300.
Saitou, M., B. Payer, U. C. Lange, S. Erhardt, S. C. Barton and M. A. Surani. 2003. Specification of germ cell fate in mice. Philos. Trans. R. Soc. Lond. B Biol. Sci. 358:1363-1370.
Santos, A. C., and R. Lehmann. 2004a. Germ cell specification and migration in Drosophila and beyond. Curr. Biol. 14:578-589.
Sato, N., L. Meijer, L. Skaltsounis, P. Greengard and A. H. Brivanlou. 2004. Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat. Med. 10:55-63.
Seamon, K. B., W. Padgett and J. W. Daly. 1981. Forskolin: unique diterpene activator of adenylate cyclase in membranes and in intact cells. Proc. Natl. Acad. Sci. USA. 78:3363-3367.
Smith, A. G. 2001. Embryo-derived stem cells: of mice and men. Annu. Rev. Cell Dev. Biol.17:435-462.
Stallock, J., K. Molyneaux, K. Schaible, C. M. Knudson, and C. Wyline. 2003. The proapoptotic gene Bax is required for death of ectopic primordial germ cells during their migration in the mouse embryo. Development 130:6589-6597.
Stewart, C. L., I. Gadi and H. Bhatt. 1 994. Stem cells from primordial germ cells can reenter the germ line. Dev. Biol. 161:626-628.
Tanaka, S. S., Y. Toyooka, R. Akasu, Y. Katoh-Fukui, Y. Nakahara, R. Suzuki, M. Yokoyama and T. Noce, 2000. The mouse homolog of Drosophila Vasa is required for the development of male germ cells. Genes Dev. 14:841-853.
Toledo, E. M., M. Colombres and N. C. Inestrosa. 2008. Wnt signaling in neuroprotection and stem cell differentiation. Prog, Neurobiol. 86:281-96
Tres, L. L., C. Rosselot and A. L. Kierszenbaum. 2004. Primordial germ cells: what does it take to be alive? Mol. Reprod. Dev. 68:1-4.
Van Es, J. H., N. Barker and H. Clevers, 2003. You Wnt some, you lose some: oncogenes in the Wnt signaling pathway. Curr. Opin. Genet. Dev. 13:28–33.
Watanabe, M., Y. Shirayoshi, U. Koshimizu, S. Hashimoto, S. Yonehara, Y. Eguchi, Y. Tsujimoto and N. Nakatsuji. 1997. Gene transfection of mouse primordial germ cells in vitro and analysis of their survival and growth control. Exp. Cell Res. 230:76-83.
Wei, W., T. Qing, X. Ye, H. Liu, D. Zhang, W. Yang and H. Deng. 2008. Primordial germ cell specification from embryonic stem cells. PLoS One 3 e4013.
Youngren, K. K., D. Coveney, X. Peng, C. Bhattacharya and L. S. Schmidt. 2005. The Ter mutation in the dead end gene causes germ cell loss and testicular germ cell tumours. Nature 435:360–364.
Yu, J., C. Angelin-Duclos, J. Greenwood, J. Liao and K. Calame. 2000. Transcriptional repression by blimp-1 (PRDI-BFI) involves recruitment of histone deacetylase. Mol. Cell. Biol. 20:2592-2603.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top