# 臺灣博碩士論文加值系統

(18.205.176.39) 您好！臺灣時間：2022/05/29 07:42

:::

### 詳目顯示

:

• 被引用:0
• 點閱:146
• 評分:
• 下載:13
• 書目收藏:0
 Interval censoring refers to a situation in which, T, the time to occurrence of an event ofinterest is only known to lie in an interval [L,R]. In some cases, the variable T also su ersleft-truncation. Based on an integral equation, we propose a self-consistent estimator (SCE)of survival function of T. It is shown that the NPMLE is a solution of the integral equation.Under some conditions, we show the consistency of the SCE.
 Content1. Introduction......................................................................................1Example 1: AIDS Cohort Studies.......................................................................12. The Nonparametric Estimators .....................................................................22.1 The NPMLE........................................................................................22.2 SCE..............................................................................................42.3.1 Theorem 1......................................................................................52.3.2 Theorem 2......................................................................................63. Simulation Results ...............................................................................83.1 Table 1..........................................................................................93.2 Table 2..........................................................................................93.3 Table 3.........................................................................................104. Discussions......................................................................................115.References........................................................................................11
 Alioum A. and Commenges D. (1996). A proportional hazards model for arbitrarily censoredand truncated data. Biometrics, 52, 512-524.Frydman, H. (1994). A note on nonparametric estimation of the distribution function frominterval-censored and truncated data. Journal of the Royal Statistical Society, Series B, 56,71-74.Gentleman, R. and Geyer C. J. (1994). Maximum likelihood for interval censored data:consistency and computation. Biometrika, 81, 618-623.Groeneboom, P. and Wellner, J. A. (1992). Information Bounds and Nonparametric Maxi-mum Likelihood Estimation. Basel: Birkhauser.Gu, M. G. and Zhang, C. H. (1993), Asymptotic properties of self-consistent estimatorsbased on doubly censored data. The Annals of Statistics 21, 611-624.Hudgens, M. G. (2005). On nonparametric maximum likelihood estimation with intervalcensoring and truncation. Journal of the Royal Statistical Society, Series B, 67, part 4,573-587.Kalbeish, J. D. and Lawless, J. F. (1989). Inferences based of retrospective ascertainment:An analysis of the data on transfusion related AIDS. Journal of the American StatisticalAssociation, 84, 360-372.Li, L., Watkins, T., Yu, Q. Q. (1997). An EM algorithm for smoothing the self-consistentestimator of survival functions with interval-censored data. Scand. J. Statist., 24, 531-542.Pan, W., Chappell, R. and Kosorok, M. R. (1998). On consistency of the monotone MLE of13survival for left truncated and interval-censored data. Statistics & Probability Letters. 38,49-57.Pan, W. and Chappell, R (1998). Computation of the NPMLE of distribution functions forinterval censored and truncated data with applications to the Cox model. ComputationalStatistics and Data Analysis, 28, 33-50.Pan, W. and Chappell, R (1999). A note on inconsistency of NPMLE of the distributionfunction from left truncated and case I interval censored data. Lifetime Data Analysis, 5,281-291.Peto, R. (1973). Experimental survival curves for interval-censored data. Appl. Statist., 22,86-91.Shen, P.-S. (2005). Estimation of the truncation probability with the left-truncated andright-censored data. Nonparametric Statistics, 17, No. 8, 957-969.Shick, A and Yu, Q. 2000. Consistency of the GMLE with mixed case interval-censoreddata. Scandinavian Journal of Statistics, 27, 45-55.Song, S. (2004). Estimation with univariate \mixed case" interval censored data. Statist.Sin., 14, 269-282.Stvring, H. and Wang, M.-C. (2007). A new approach of nonparametric estimation ofincidence and lifetime risk based on birth rates and incident events. BMC Medical Research,7:53, 1-11.Thomas, D. R. and Grunkemeier, G. L. (1975). Con dence interval estimation of survivalprobabilities for censored data. Journal of the American Statistical Association, 70, 865-871.Turnbull, B. W. (1974). Nonparametric estimation of a survivorship function with doublycensored data. Journal of the American Statistical Association, 69, 169-173.Turnbull, B. W. (1976). The empirical distribution function with arbitrarily grouped censoredand truncated data. Journal of the Royal Statistical Society, Series B, 38, 290-295.van der Vaart, A. and Wellner, J. A. (2000). Preservation theorems for Glivenko-Cantelliand uniform Glivenko-Cantelli classes. In High Dimensional Probability II, pp. 115-133.Boston: Birkhauser.Wang, M.-C. 1991, Nonparametric estimation from cross-sectional survival data. J. Amer.Statist. Ass., 86, 130-143.Woodroofe, M., 1985, Estimating a distribution function with truncated data. Ann. Statist.,1413, 163-167.Yu, Q., Li, L. and Wong, G.Y.C., (1998a). Asymptotic variance of the GMLE of a survivalfunction with interval-censored data. Sankhya, 60, 184-187.Yu, Q., Shick, A., Li, L. and Wong, G.Y.C., (1998b). Asymptotic properties of the GMLEwith case 2 interval-censored data. Statistics & probability letters, 37, 223-228.Yu, Q. Q., Li, L., and Wong, G. Y. C. (2000), On consistency of the self-consistent estimatorof survival function with interval censored data. Scan. J. of Statist., 27, 35-44.Yu, Q. Q., Wong, G. Y. C., and Li, L. (2001), Asymptotic properties of self-consistentestimators with mixed interval-censored data. Ann. Inst. Stat. Math., 53, 469-486.
 電子全文
 國圖紙本論文
 連結至畢業學校之論文網頁點我開啟連結註: 此連結為研究生畢業學校所提供，不一定有電子全文可供下載，若連結有誤，請點選上方之〝勘誤回報〞功能，我們會盡快修正，謝謝！
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 1 在左截取現狀資料下存活函數的限制性無母數最大概似估計值與自我一致估計值 2 左截現狀資料下存活函數之非參數估計 3 含無事件機率之事件發生時間不完整資料的統計推論

 1 [18] 蔡東湖、王麗惠、洪菱謙、鄭婷宜、陳介甫，“腦部微透析動物模式應用在穴位針刺研究”，中醫藥雜誌，pp.129-132，2001 2 [6] 林昭庚，鍾傑，林高士，朱樺，“低周波電子針灸器之臨床療效初報”，臨床醫學，四卷二期，pp.1-8，1979

 1 左截與右設限下轉換模型之半參數分析 2 在雙截、相依設限的資料下，估計三個持續時間的聯合存活函數 3 左截右設限資料下半參數轉換模型擬最大概似估計 4 在半參數轉換馬可模型下探討多狀態存活分析 5 在右截資料下轉換模型之分析探討 6 在雙截資料下COX Model 的擬最大概似估計 7 在左截相依設限資料下連持續時間的存活分配估計 8 雙設限資料下之Aalen模型 9 時間至事件資料之多階段模型分析：應用於企業信用評等 10 雙截區間設限資料下無母數最大概似估計 11 雙變數重複發生事件分配的逆加權估計 12 在雙變數左截右設限資料下Copula Model的相關參數估計 13 在左截取現狀資料下存活函數的限制性無母數最大概似估計值與自我一致估計值 14 雙變數雙截資料下Kendall’s Tau之估計 15 左截現狀資料下存活函數之非參數估計

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室