|
Alioum A. and Commenges D. (1996). A proportional hazards model for arbitrarily censored and truncated data. Biometrics, 52, 512-524. Frydman, H. (1994). A note on nonparametric estimation of the distribution function from interval-censored and truncated data. Journal of the Royal Statistical Society, Series B, 56, 71-74. Gentleman, R. and Geyer C. J. (1994). Maximum likelihood for interval censored data: consistency and computation. Biometrika, 81, 618-623. Groeneboom, P. and Wellner, J. A. (1992). Information Bounds and Nonparametric Maxi- mum Likelihood Estimation. Basel: Birkhauser. Gu, M. G. and Zhang, C. H. (1993), Asymptotic properties of self-consistent estimators based on doubly censored data. The Annals of Statistics 21, 611-624. Hudgens, M. G. (2005). On nonparametric maximum likelihood estimation with interval censoring and truncation. Journal of the Royal Statistical Society, Series B, 67, part 4, 573-587. Kalb eish, J. D. and Lawless, J. F. (1989). Inferences based of retrospective ascertainment: An analysis of the data on transfusion related AIDS. Journal of the American Statistical Association, 84, 360-372. Li, L., Watkins, T., Yu, Q. Q. (1997). An EM algorithm for smoothing the self-consistent estimator of survival functions with interval-censored data. Scand. J. Statist., 24, 531-542. Pan, W., Chappell, R. and Kosorok, M. R. (1998). On consistency of the monotone MLE of 13 survival for left truncated and interval-censored data. Statistics & Probability Letters. 38, 49-57. Pan, W. and Chappell, R (1998). Computation of the NPMLE of distribution functions for interval censored and truncated data with applications to the Cox model. Computational Statistics and Data Analysis, 28, 33-50. Pan, W. and Chappell, R (1999). A note on inconsistency of NPMLE of the distribution function from left truncated and case I interval censored data. Lifetime Data Analysis, 5, 281-291. Peto, R. (1973). Experimental survival curves for interval-censored data. Appl. Statist., 22, 86-91. Shen, P.-S. (2005). Estimation of the truncation probability with the left-truncated and right-censored data. Nonparametric Statistics, 17, No. 8, 957-969. Shick, A and Yu, Q. 2000. Consistency of the GMLE with mixed case interval-censored data. Scandinavian Journal of Statistics, 27, 45-55. Song, S. (2004). Estimation with univariate \mixed case" interval censored data. Statist. Sin., 14, 269-282. Stvring, H. and Wang, M.-C. (2007). A new approach of nonparametric estimation of incidence and lifetime risk based on birth rates and incident events. BMC Medical Research, 7:53, 1-11. Thomas, D. R. and Grunkemeier, G. L. (1975). Condence interval estimation of survival probabilities for censored data. Journal of the American Statistical Association, 70, 865-871. Turnbull, B. W. (1974). Nonparametric estimation of a survivorship function with doubly censored data. Journal of the American Statistical Association, 69, 169-173. Turnbull, B. W. (1976). The empirical distribution function with arbitrarily grouped censored and truncated data. Journal of the Royal Statistical Society, Series B, 38, 290-295. van der Vaart, A. and Wellner, J. A. (2000). Preservation theorems for Glivenko-Cantelli and uniform Glivenko-Cantelli classes. In High Dimensional Probability II, pp. 115-133. Boston: Birkhauser. Wang, M.-C. 1991, Nonparametric estimation from cross-sectional survival data. J. Amer. Statist. Ass., 86, 130-143. Woodroofe, M., 1985, Estimating a distribution function with truncated data. Ann. Statist., 14 13, 163-167. Yu, Q., Li, L. and Wong, G.Y.C., (1998a). Asymptotic variance of the GMLE of a survival function with interval-censored data. Sankhya, 60, 184-187. Yu, Q., Shick, A., Li, L. and Wong, G.Y.C., (1998b). Asymptotic properties of the GMLE with case 2 interval-censored data. Statistics & probability letters, 37, 223-228. Yu, Q. Q., Li, L., and Wong, G. Y. C. (2000), On consistency of the self-consistent estimator of survival function with interval censored data. Scan. J. of Statist., 27, 35-44. Yu, Q. Q., Wong, G. Y. C., and Li, L. (2001), Asymptotic properties of self-consistent estimators with mixed interval-censored data. Ann. Inst. Stat. Math., 53, 469-486.
|