跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/03/20 17:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡達緯
研究生(外文):Tsai, Da-Wei
論文名稱:具智慧學習機制之節能控制系統設計
論文名稱(外文):Energy Control System Design with Intelligent Learning Mechanism
指導教授:蔡坤霖蔡坤霖引用關係
指導教授(外文):Tsai, Kun-Lin
口試委員:張延任鐘玉芳陳弘明
口試委員(外文):Jang, Yan-RenJung, Yu-FangChen, Hung-Ming
口試日期:2011-07-20
學位類別:碩士
校院名稱:東海大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:99
語文別:中文
論文頁數:62
中文關鍵詞:綠能家庭智慧型控制節能省電
外文關鍵詞:Green HomeIntelligent ControlEnergy saving
相關次數:
  • 被引用被引用:0
  • 點閱點閱:301
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:1
由於天然資源日益匱乏,該如何掌握未來節能減碳之趨勢以求供電穩定與可靠,為當前研究上一個重要課題。本論文旨在研發一具有智慧型學習功能之家庭節能控制系統。本系統主要針對家中所有智慧插座裝置進行控制,依照控制模式的不同可分為由系統主動控制的智慧型自動控制以及由使用者操作的手動控制。本系統內部架構包含控制區塊、記憶區塊及學習區塊等三大區塊。控制區塊具有智慧控制模式與手動控制模式,是整個節能控制系統的核心所在,主要負責依照各種情況輸出正確的控制訊號;學習區塊則對使用者習慣進行學習,以提供有效的節能控制;記憶區塊則用來記錄各智慧插座的運作資訊並記憶學習區塊之輸出。本系統所提供之功能,主要在於針對智慧插座之供電時間進行調整,在智慧學習的過程當中,若判斷使用者不需使用插座上的電器,則停止該智慧插座之供電,以關閉電器之待機功耗,達到節能目的。此外,亦可讓使用者設定某一智慧插座之供電時間,提高使用便利性。與其它節能控制系統不同的是,本系統以類神經網路學習演算法來學習使用者的生活習慣,而不需使用大量的感測器。
Due to the scarcity of natural resources, master the trend of energy saving and carbon emission reduction in the future in order to stable and reliable power supply for the present study is an important issue. In this paper, we develop a central control system with intelligent learning function for home. Central control system controls all of the individual outlet devices, according to the different control modes. The control modes include intelligent automatic control and manual control. The system architecture contains three major blocks: the control block, memory block and intelligent learning block. Control block which is the major module of central control system can perform intelligent automatic control mode and manual control mode. Learning block is used to learn the user’s habit and outputs effective energy control signals. Memory block is used to record the information of each smart socket. The functionality of the proposed system is to adjust the power supply time of each smart socket. In the process of intelligent learning, if the users do not need to use certain socket, then the system suspend the power supply of the socket, so that the standby power of electric appliance can be saved. Besides, the system provides user to setup the power supply time of certain smart socket to enhance the user convenience. Different with other energy-saving control systems, the proposed system uses neural network algorithm to study user's habits, and do not need any extra sensors.
第1章 導論 1
1.1 研究目的 1
1.2 節能系統功能及應用環境 3
1.3 智慧節能系統特色與優點 5
1.4 章節安排 8
第2章 背景 9
2.1 已開發之家庭節能智慧控制裝置 9
2.2 家庭節能控制之學術研究 11
2.3 智慧型控制之比較 14
第3章 個體插座智慧型控制機制 18
3.1 系統控制模組 18
3.2 I/O介面與控制法則 20
3.3 類神經網路學習模組 22
3.3.1 類神經網路簡介 22
3.3.2 人工神經元模型 23
3.3.3 類神經演算法的種類與應用 26
3.3.4 倒傳遞類神經智慧學習功能 28
第4章 系統架構 33
4.1 系統架構圖 33
4.1.1 系統控制方塊圖及I/O功能說明 33
4.2 個體插座節能控制模式與功能 35
4.2.1 系統控制對象 35
4.2.2 控制模式流程 35
4.2.3 個體控制狀態圖 38
第5章 模擬方法與實作結果 40
5.1 ARM9模擬環境 40
5.1.1 模擬實作平台介紹 40
5.1.2 模擬語言 42
5.1.3 模擬之I/O介面 42
5.2 實作結果 45
5.2.1 模擬結果 45
第6章 總結與未來工作 48
參考文獻 49

[1]丁仁東,能源枯竭的告警,科學教育月刊,331期,2010年8月。
[2]國家節能減碳總計畫,行政院節能減碳推動會。
[3]K. Hyun Hee, H. Kyoung Nam, L. Suk, and L. Kyung Chang, “Resident Location-Recognition Algorithm Using a Bayesian Classifier in the PIR Sensor-Based Indoor Location-Aware System,” IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews,, vol. 39, pp. 240-245, 2009.
[4]Z. Lan, L. Henry, and K. Chan, “Information fusion based smart home control system and its application,” IEEE Transactions on Consumer Electronics, vol. 54, pp. 1157-1165, 2008.
[5]S. Young-Sung, T. Pulkkinen, M. Kyeong-Deok, and K. Chaekyu, “Home energy management system based on power line communication,” IEEE Transactions on Consumer Electronics , vol. 56, pp. 1380-1386, 2010.
[6]W. Zhenxing, W. Shutao, S. Linxiang, and L. Zhongyuan, "The Analysis and Implementation of Smart Home Control System," in International Conference on Information Management and Engineering, 2009. ICIME '09., 2009, pp. 546-549.
[7]-, iEN-ASP智慧型節能管理,中華電信數據分公司。
[8]The Jeff Lieberman Video, CMU–SPEED from the 2011 wats:ON? Festival, http://www.arc.cmu.edu/cbpd/index.html
[9]-, 智能建築中暖通空調和照明系統控制策略,建設工程教育網(www.jianshe99.com),Sept. 2008。
[10]-, “White paper for Cisco Home Energy Controller”, Cisco Systems. Inc. 2010
[11]Intel®家庭能源儀表板, http://www.intel.com/embedded/energy/homeenergy
[12]G. N. Khan and J. B. Chan, “SoPC Based Smart Home Embedded Computer Capable of Caring for the Home Occupants,” in Canadian Conference on Electrical and Computer Engineering, 2007. CCECE 2007., 2007, pp. 206-209.
[13]陳束弘、林政廷,智慧型家庭能源管理系統之建構,工業技術研院能源與環境研究所。
[14]H. Il-kyu, L. Dae-sung, and B. Jin-wook, “Home network configuring scheme for all electric appliances using ZigBee-based integrated remote controller,” IEEE Transactions on Consumer Electronics , vol. 55, pp. 1300-1307, 2009.
[15]H. Chien-Chang and W. Liang-Zong, “A smart home resource management system for multiple inhabitants by agent conceding negotiation,” in IEEE International Conference on Systems, Man and Cybernetics, 2008. SMC 2008., pp. 607-612.
[16]S. Changsu and K. Young-Bae, “Design and implementation of intelligent home control systems based on active sensor networks,” IEEE Transactions on Consumer Electronics, vol. 54, pp. 1177-1184, 2008.
[17]M. Kwan Joo, L. Jae Min, K. Dong-Sung, and K. Wook Hyun, “Home network control protocol for networked home appliances,” IEEE Transactions on Consumer Electronics , vol. 52, pp. 802-810, 2006.
[18]Z. Lan, L. Henry, and K. Chan, “Information fusion based smart home control system and its application,” IEEE Transactions on Consumer Electronics, vol. 54, pp. 1157-1165, 2008.
[19]S. K. Das, D. J. Cook, A. Battacharya, E. O. Heierman, III, and L. Tze-Yun, “The role of prediction algorithms in the MavHome smart home architecture,” IEEE Wireless Communications,, vol. 9, pp. 77-84, 2002.
[20]S. Wei and D. Yun-wei, “On Designing and Verifying Smart Home Embedded Software Model Based on AADL,” in International Conference on Future Generation Communication and Networkin, FGCN’08. 2008, vol. 2, pp. 217-221.
[21]Jonghwa Choi Dongkyoo Shin Dongil Shin, “Research and Implementation of the Context-Aware Middleware for Controlling Home Appliances,” International Conference on Consumer Electronics, 2005. ICCE. 2005.
[22]T. Perumal, A. R. Ramli, L. Chui Yew, S. Mansor, and K. Samsudin, “Interoperability among Heterogeneous Systems in Smart Home Environment,” in IEEE International Conference on Signal Image Technology and Internet Based Systems. SITIS '08., 2008, pp. 177-186.
[23]P. Wan-Ki, C. Chang-sic, L. Il-woo, and J. Jonghyun, “Energy efficient multi-function home gateway in always-on home environment,” IEEE Transactions on Consumer Electronics, vol. 56, pp. 106-111, 2010.
[24]L. Minsoo, U. Yoonsik, K. Yong, K. Gwanyeon, and P. Sehyun, “Intelligent power management device with middleware based living pattern learning for power reduction,” IEEE Transactions on Consumer Electronics, vol. 55, pp. 2081-2089, 2009.
[25]P. Wan-Ki, C. Chang-sic, L. Il-woo, and J. Jonghyun, “Energy efficient multi-function home gateway in always-on home environment,” IEEE Transactions on Consumer Electronics, vol. 56, pp. 106-111, 2010.
[26]H. Dae-Man and L. Jae-Hyun, "Design and implementation of smart home energy management systems based on zigbee," IEEE Transactions on Consumer Electronics,, vol. 56, pp. 1417-1425, 2010.
[27]S. Changsu and K. Young-Bae, “Design and implementation of intelligent home control systems based on active sensor networks,” IEEE Transactions on Consumer Electronics, vol. 54, pp. 1177-1184, 2008.
[28]L. Chia-Hung, B. Ying-Wen, and L. Ming-Bo, “Remote-Controllable Power Outlet System for Home Power Management,” IEEE Transactions on Consumer Electronics, vol. 53, pp. 1634-1641, 2007.
[29]Y. Chee-Min, T. Hee-Yuan, K. Choon-Keat, L. Hoon-Jae, and L. Hyotaek, “e2Home: A Lightweight Smart Home Management System,” in International Conference on Convergence and Hybrid Information Technology, ICCIT '08. 2008, vol. 1, pp. 82-87.
[30]K. Hee-Sun, H. Sang-Seok, and L. Chang-Goo, “The Jini-Based Broadband Power Line Communication (BPLC) Home Control System,” in International Symposium on Information Technology Convergence, ISITC 2007., 2007, pp. 86-90.
[31]L. Chia-Hung, B. Ying-Wen, and L. Ming-Bo, “Remote-Controllable Power Outlet System for Home Power Management,” IEEE Transactions on Consumer Electronics, vol. 53, pp. 1634-1641, 2007.
[32]X. Q. Liu, B. W. Ang, and T. N. Goh, “Forecasting of electricity consumption: a comparison between an econometric model and a neural network model,” in IEEE International Joint Conference on Neural Networks, 1991, pp. 1254-1259 vol.1252.
[33]Y. H. Fung and V. M. Rao Tummala, “Forecasting of electricity consumption: a comparative analysis of regression and artificial neural network models,” in International Conference on Advances in Power System Control, Operation and Management, 1993. APSCOM-93., pp. 782-787 vol.782.
[34]D. Srinivasan, A. C. Liew, and J. S. P. Chen, “Short term forecasting using neural network approach,” in Proceedings of the First International Forum on Applications of Neural Networks to Power Systems, 1991, pp. 12-16.
[35]P. Caire, G. Hatabian, and C. Muller, “Progress in forecasting by neural networks,” in International Joint Conference on Neural Networks, IJCNN., 1992, vol. 2, pp. 540-545 vol.542.
[36]M. D. Skowronski and J. G. Harris, “Noise-Robust Automatic Speech Recognition Using a Predictive Echo State Network,” IEEE Transactions on Audio, Speech, and Language Processing, vol. 15, pp. 1724-1730, 2007.
[37]H. Ketabdar and H. Bourlard, “Enhanced Phone Posteriors for Improving Speech Recognition Systems,” IEEE Transactions on Audio, Speech, and Language Processing, vol. 18, pp. 1094-1106, 2010.
[38]葉怡成,類神經網路模式應用與實作,儒林圖書,台北,2000。
[39]X. Lei, “BYY harmony learning, independent state space, and generalized APT financial analyses,” IEEE Transactions on Neural Networks, vol. 12, pp. 822-849, 2001.
[40]X. Bo, W. Meng, and T. Dacheng, “Toward the Optimization of Normalized Graph Laplacian,” IEEE Transactions on Neural Networks, vol. 22, pp. 660-666, 2011.
[41]M. Marolt, “A connectionist approach to automatic transcription of polyphonic piano music,” IEEE Transactions on Multimedia, vol. 6, pp. 439-449, 2004.
[42]P. Kordik, M. Hasaj, M. Tvrdy, and M. Snorek, “Building Automation Simulator and Control Strategy for Intelligent and Energy Efficient Home,” in Third UKSim European Symposium on Computer Modeling and Simulation, EMS '09., 2009, pp. 154-159.
[43]Z. Huiru, W. Haiying, and N. Black, “Human Activity Detection in Smart Home Environment with Self-Adaptive Neural Networks,” in IEEE International Conference on Networking, Sensing and Control, ICNSC 2008., 2008, pp. 1505-1510.
[44]P. Rashidi and D. J. Cook, “Keeping the Resident in the Loop: Adapting the Smart Home to the User,” IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, vol. 39, pp. 949-959, 2009.
[45]T. M. Khoshgoftaar, J. Van Hulse, and A. Napolitano, “Supervised Neural Network Modeling: An Empirical Investigation Into Learning From Imbalanced Data With Labeling Errors,” IEEE Transactions on Neural Networks, vol. 21, pp. 813-830, 2010.
[46]S. Mitra, S. Fusi, and G. Indiveri, “Real-Time Classification of Complex Patterns Using Spike-Based Learning in Neuromorphic VLSI,” IEEE Transactions on Biomedical Circuits and Systems, vol. 3, pp. 32-42, 2009.
[47]P. Carbonetto, N. de Freitas, P. Gustafson, and N. Thompson, “Bayesian Feature Weighting for Unsupervised Learning with Application to Object Recognition,” Proc. Ninth Int’l Workshop Artificial Intelligence and Statistics, pp. 122-128, Jan. 2003.
[48] Faa-Jeng Lin, and Ying-Chih Hung, “FPGA-Based Elman Neural Network Control System for Linear Ultrasonic Motor,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 56, no. 1, pp. 101-113, Jan. 2009.
[49]N. Najmaei and M. R. Kermani, “Applications of Artificial Intelligence in Safe Human, Robot Interactions,” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics , vol. 41, pp. 448-459, 2011.
[50]Y. Xiaofang, W. Yaonan, W. Lianghong, Z. Xizheng, and S. Wei, “Neural Network Based Self-Learning Control Strategy for Electronic Throttle Valve,” IEEE Transactions on Vehicular Technology, vol. 59, pp. 3757-3765, 2010.
[51]X. Shen and X. Song, “Analysis of Chinese Enterprise Financial Crisis Prewarning Based on BP Neural Network,” in International Conference on Management and Service Science (MASS), 2010, pp. 1-3.
[52]C. Long, H. Zeng-Guang, T. Min, L. Yingzi, and Z. Wenjun, “Neural-Network-Based Adaptive Leader-Following Control for Multiagent Systems With Uncertainties,” IEEE Transactions on Neural Networks, vol. 21, pp. 1351-1358, 2010.
[53]L. Abrahamsson, So, x, and L. der, “Fast Estimation of Relations Between Aggregated Train Power System Data and Traffic Performance,” IEEE Transactions on Vehicular Technology, vol. 60, pp. 16-29, 2011.
[54]G. Kortuem, F. Kawsar, D. Fitton, and V. Sundramoorthy, “Smart objects as building blocks for the Internet of things,” IEEE Internet Computing , vol. 14, pp. 44-51, 2010.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top