跳到主要內容

臺灣博碩士論文加值系統

(44.192.95.161) 您好!臺灣時間:2024/10/10 10:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:呂理維
研究生(外文):Lu, Liwei
論文名稱:利用磁性金屬臭氧催化劑降解水中消毒副產物
論文名稱(外文):The assembly of maagnetic metal ozone catalyst to decompose disinfection of byproduct
指導教授:張鎮南張鎮南引用關係
指導教授(外文):Chang, chengnan
口試委員:宋孟浩吳嘉文馬英石
口試委員(外文):Sung, MenghaoWu, ChiawenMa, Yingshih
口試日期:2011-07-18
學位類別:碩士
校院名稱:東海大學
系所名稱:環境科學與工程學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:100
中文關鍵詞:天然腐植酸臭氧反應催化臭氧反應氧化還原電位氫氧自由基
外文關鍵詞:NOMs, Ozonation, ORP, hydroxyl radicals, catalytic ozonation
相關次數:
  • 被引用被引用:2
  • 點閱點閱:361
  • 評分評分:
  • 下載下載:64
  • 收藏至我的研究室書目清單書目收藏:0
本研究採集天然水樣為供應大台中地區飲用水水源的德基水庫,利用DAX-8樹脂將原水樣品分離成五種有機成分,分別為腐植酸(10.8%)、黃酸(25.4%)、疏水性中性物質(23%)、疏水性鹼性物質(4.1%)和親水性物質(34.9%)。磁性Fe3O4/SiO2/CoOx催化顆粒利用溶膠凝膠法製成應用於催化臭氧反應上。而顆粒上的pHpzc 為 1.87,一開始先利用商業性腐植酸作為降解對象,找出在不同的pH值上的最佳降解效果。在pH 4時,比較於臭氧反應,催化臭氧反應有明顯的降解效果,而所得到的Kd值為0.214(s-1)。香豆素作為捕捉氫氧自由基的物質,也是觀察在催化臭氧反應下氧化直接與間接反應的途徑,實驗數據顯出直接/間接的比率為37/63在pH 4的條件之下,而pH 7時為39/61,pH 10 29/71。催化臭氧反應在降解腐植酸的數據A254,在pH 4為88.6%,在pH 7為82.6%,在pH 10為81.8%。催化臭氧反應其在酸、中、鹼都以間接氧化反應為主。
This study collected natural water samples from Te-Chi Reservoir which provides the water source to the metropolitan Taichung area. The organic contents of raw water sample were extracted and classified into hydrophobic neutrals (HPON, 23%), humic acids (HAs, 10.8%), fulvic acids (FAs, 25%) hydrophobic bases (HPOB, 4.1%) and hydrophilic fractions (HPI-F, 34.9%). Magnetic Fe3O4/SiO2/CoOx was synthesized by sol-gel methods as catalysts in ozonation. The catalysts was indicated with the pHzpc of 1.87. Initially, decomposition of commercial humic acid in different pH levels, (pH 4, 7 and 10) was investigated. The acidic condition was found have high decomposition rate (Kd, 0.214 S-1). The coumarin as a hydroxyl radical scavenger was investigated the contribution of direct/indirect oxidation mechanisms in deionized water by sole ozonation and catalytic ozonation in different pHs. Experimental data indicated the contribution of direct/indirect reactions were 37/63% in pH 4, 39/61% in pH 7 and 29/71% in pH 10 by catalytic ozonation, respectively. The indirect oxidation would be the major reaction mechanisms in the catalytic ozonation. The catalyst ozonation reduction rates of A254 are 88.6% (pH 4), 82.6 (pH 7) and 81.8% (pH 10), which is significantly improved than that of ozone alone systems.
摘要............................................…………………………....……….....I
Abstract II
CHAPTER 1 INTRODUCTION 1
1.1 Introduction 1
1.2 Objective...........................................................................................4
CHAPTER 2 LITERATURE REVIEW 5
2.1 Natural Organic Matters (NOMs) in reservior 5
2.2 The characteristic of disinfection by-products (DBPs) 7
2.3 Advanced oxidation processes (AOPs) 10
2.4 Ozone reaction 12
2.5 Catalytic ozonation 16
2.6 Homogeneous catalytic ozonation 17
2.7 Heterogeneous catalytic ozonation 20
2.7 Heterogeneous catalytic ozonation 20
2.7.1 Mechanism 21
2.7.2 Mesoporous 27

CHAPTER 3 MATERIAL AND METHODS 29
3.1 Experiment Framework 29
3.2 Sample Preparation and Fractionation Procedures 31
3.2.1 Sampling Site and Preservation 31
3.2.2 Extraction procedure 32
3.3 Analysis Method 38
3.3.1 Absorbance at Wavelength of 254 nm (A254), Dissolved Organic 31
3.3.2 Disinfection By-Product Formation Potential (DBPFP) Study 32
3.3.3 Trihalomethanes (THMs) 42
3.4 Ozonation and Catalytic Ozonation System 45
3.5 The preparation of magnetic catalysts 48
3.5.1 Preparation of Fe3O4 48
3.5.2 Preparation of Fe3O4/SiO2 48
3.5.3 Preparation of Fe3O4/SiO2/CoOx ......……...…………………48
3.6 Fourier Transform Infrared Spectrometer (FTIR) and Carbon-13 Nuclear Magnetic Resonance (CPMAS 13C NMR) 50
3.6.1 Fourier Transform Infrared Spectrometer (FTIR) 50
3.6.2 Carbon-13 Nuclear Magnetic Resonance (CPMAS 13C NMR) 50
CHAPTER 4 RESULTS AND DISSCUSION 52
4.1 The Characteristic of Te-Chi Reservoir 52
4.1.1 Water quality of Te-Chi Reservoir 52
4.1.2 The organic fractions ratio in NOMs of Te-Chi Reservoir 55
4.1.3 The SUVA for Raw Water and Five Extracted Organic Fractions 59
4.2 The characteristics of the assembled catalysts 62
4.3 The decomposition of A254 in different pHs 68
4.4 The dosage catalysts 86
4.5 The functional groups profile of NOMs in different AOPs 87

CHAPTER 5 CONCLUSIONS AND SUGGESTIONS 91
5.1 Conclusions 91
5.2 Suggestions 92
REFERENCE 93


A ´ lvarez, P.M., Beltra´n, F.J., Pocostales J.P., Masa F.J., (2007), “Preparation and structural characterization of Co/Al2O3 catalysts for the ozonation of pyruvic acid” Applied Catalysis B: Environmental, Vol. 72, p. 322–330.

Ates, N., Kitis, M., Yetis, U., (2007), “Formation of chlorination by-products in waters with low SUVA - correlations with SUVA and differential UV spectroscopy”, Wat. Res., Vol. 41, pp. 4139-4148.

Barrett, S.E., Krasner, S.W., and Amy, G.L., (1999), “Natural organic matter and disinfection by-products: characterization and control in drinking water”, Symposia papers presented before the division of environmental chemistry american chemical society anaheim, CA, Vol. 39, p. 195-196.

Bard, A.J., Parsons, R., Jordan, J., (1985), “Standard Electrode potentials in Aqueous Solutions” IUPAC, Vol. 44, p. 3039-3054.
Beltran, F.J., Rivas, F.J., Montero-de-Espinosa, R., (2003), “Ozone-Enhanced Oxidation of Oxalic Acid in Water with Cobalt Catalysts. 2. Heterogeneous Catalytic Ozonation”, Industrial & Engineering Chemistry Research Vol. 42 p. 3210–3217.

Bessiere, Yolaine and Jefferson, Bruce and Goslan, Emma and Bacchin, Patrice, “Effect of hydrophilic / hydrophobic fractions of Natural Organic Matter on irreversible fouling of membranes”, Desalination, Vol. 249, p. 182-187.

Bougeard, C.M.M., Goslan, E.H., Jefferson, B., Parsons, S.A., (2010), “Comparison of the disinfection by-product formation potential of treated waters exposed to chlorine and monochloramine”, Wat. Res. Vol. 44, p. 729-740.

Carthy, P.M. and Suffet, I.H., (1989), “Aquatic humic substances: influence on fate and treatment of pollutants”, ACS, Washington, DC.

Chen, F. H., Gao, Q. and Ni, J. Z., (2008), “The grafting and release behavior of doxorubincin from Fe3O4@ SiO2 core – shell structure nanoparticles via an acid cleaving amide bond : the potential for magnetic targeting drug delivery” Nanotechnology, Vol. 19, P. 165103.
Chen, J., Gu B., Leboeuf E., Pan, H. and Dai, S., (2002), “Spectroscopic characterization of the structural and functional properties of natural organic matter fractions”, Chemosphere, Vol.48 p.59-68.

Choi, Jeong-Yong, Kim, Kwan, Shin, Kuan Soo, (2010), “Surface-enhanced Raman scattering inducible by recyclable Ag-coated magnetic particles”, Vol. 53, p. 117 120.

Chu, W., Chan, K. H., Graham, N. J. D., (2006), “Enhancement of ozone oxidation and its associated processes in the presence of surfactant: Degradation of atrazine”, Chemosphere., Vol. 64, p. 931-936.

Crittenden, J.C., Hu, S., Hand, D.W., and Green, S.A., (2005), “A kinetic model for H2O2/UV process in a completely mixed batch reactor”, Water Res. Vol. 33, p. 2315-2328.

Duirk, Stephen E. and Valentine, Richard L., (2006), “Modeling dichloroacetic acid formation from the reaction of monochloramine with natural organic matter”, Water research Vol. 40, p. 2667-2674.

Ernst, M.; Lurot, F.; Schrotter, J. C., (2004), “Catalytic ozonation of refractory organic model compounds in aqueous solution by aluminum oxide”, Appl. Catal., B, Vol. 47, p. 15–25.

Gruttadauria, M., Liotta, L.F., Carlo, G. Di, Pantaleo, G., Deganello, G., Meo, P. Lo, Aprile, C., Noto, R., (2007), “Oxidative degradation properties of Co-based catalysts in the presence of ozone” Applied Catalysis B: Environmental Vol. p.75281–289.

Hoigne, J. and Staehelin, J., (1982), “Decomposition of Ozone in Water: Rate of Initiation by Hydroxide Ions and Hydrogen Peroxide”, Environ. Sci. Technol., Vol.16, p. 676.

Hoigne´ , J. and Bader, H., (1983), “Rate constants of reactions of ozone with organic and inorganic compounds in water—I: not dissociating organic compounds”, Water Res. Vol. 17, p. 173–183.

Karnik, B.S., Davies, S.H., Baumann, M.J., Masten, S.J., (2005), ”The effects of combined ozonation and filtration on disinfection by-product formation”, Wat. Res., Vol. 39, p. 2839-2850.

Karpel, Nathalie, Leitner, Vel, and Fu, Hongxiang, (2005), ” pH effects on catalytic ozonation of carboxylic acids with metal on metal oxides catalysts”, Topics in Catalysis Vol. 33, p. 1–4.

Kanokkantapong, V., Marhaba, T.F., Panyapinyophol, B., Wattanachira, S. and Pavasant, P., (2006), “Characterization of Natural Organic Matter Fractionation for Bangkok Water Source”, Thai Env. Eng., Journal Vol. 19, p. 17-27.

Kasprzyk-Hordern, B., Ziolek, M., Nawrocki, J., (2003), “Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment”, Appl. Catal. B: Environ Vol. 46, p. 639–669.

Katsuhiko Nakamuro, Hitoshi Ueno, Michiko Nakao and Yasuyoshi Sayato, (1990 ), “Formation of hydrogen peroxide by aqueous ozonation of humic acid and aromatic hydrocarbons”, Vol. 20, P. 525-531.

Khan, M. H. and Jung, Jin Young, (2008) “Ozonation catalyzed by homogeneous and heterogeneous catalysts for degradation of DEHP in aqueous phase”, Chemosphere Vol. 72, p. 690–696.

Koshino, H., Satoh, H., Yamadac, T., Esumia, Y., (2006), “Structural revision of peribysins C and D”, Tetrahedron Letters, Vol. 47, p. 4623-4626.

Lamsal, Rupa Lamsal, Margaret, E. Walsh and Graham, A. Gagnon, (2011), “Comparison of advanced oxidation processes for the removal of natural organic matter”, Water Research.

Legube, B. and Leitner, N.K.V., (1999), “Catalytic ozonation: a promising advanced oxidation technology for water treatment”, Catal. Today Vol. 53, p. 61–72.

Liang, L. and Singer, P.C. (2003). Factors influencing the formation and relative distribution of haloacetic acids and trihalomethanes in drinking water. Environmental Science and Technology, Vol. 37, p. 2920–2928.

Liotta, L.F., Gruttadauria, M., Carlo, G. Di, Perrini, G., Librando V., (2009), “Heterogeneous catalytic degradation of phenolic substrates: Catalysts activity”, Journal of Hazardous Materials Vol. 162 p. 588–606.

Lu, J., Zhang, T., Ma, J., Chen, Z., (2009), “Evaluation of disinfection by-products formation during chlorination and chloramination of dissolved natural organic matter fractions isolated from a filtered river water”, Journal of Hazardous Mater., Vol. 162, p. 140-145.

Lv, Aihua, Hu, Chun, Nie, Yulun, Qu, Jiuhui, (2010), “Catalytic ozonation of toxic pollutants over magnetic cobalt and manganese co-doped -Fe2O3 “, Applied Catalysis B: Environmental, Vol. 100, p. 62-67.

Ma, Jun, Sui, Minghao, Zhang, Tao, Guan, Chunyu, (2005), “Effect of pH on MnOx/GAC catalyzed ozonation for degradation of nitrobenzene”, Water Research Vol. 39 p. 779–786.

Ma, Ying Shih and Chang, Cheng Nan, (2010), “Application of perfluorooctylalumina in the ozonated decomposition of humic acids”, Ozone: Science & Engineering, Vol. 32, p265-273.

Melero, J.A., Martinez, F., Botas, J.A., Molina, R., Pariente, M.I., (2009), Heterogeneous catalytic wet peroxide oxidation systems for the treatment of an industrial pharmaceutical wastewater”, Water Res. Vol. 43 p. 4010–4018.

Monteagudo, J.M., Carmona, M., Duran, A., (2005), “Photo-Fenton-assisted ozonation of p-Coumaric acid in aqueous solution”, Chem., Vol. 60, p. 1103-1110.

Mortazavi, S. B., Asgari, Gh., Hashemian, S. J., Moussavi G. Moussavi, (2009), “Degradation of humic acids through heterogeneous catalytic ozonation with bone charcoal”, Reac Kinet Mech Cat., Vol. 100 p. 471–485.

Moussavi Gholamreza, Khavanin, Ali, Alizadeh, R., (2010), “The integration of ozonation catalyzed with MgO nanocrystals and the biodegradation for the removal of phenol from saline wastewater”, Applied Catalysis B: Environmental Vol. 97, p. 160–167.

Muellner, M. G., Wagner, E. D., McCalla, K., Richardson, S. D., Woo, Y. T., Plewa, M. J., (2007), “Haloacetonitriles vs. regulated haloacetic acids: Are nitrogen-containing DBPs more toxic?”, Environmental Science & Technology, Vol. 41, p.645-651.

Orge, C.A., Orfao, J.J.M., Pereira, M.F.R., (2011), ”Catalytic ozonation of organic pollutants in the presence of cerium oxide–carbon composites”, Applied Catalysis B: Environmental, Vol. 102 p. 539–546.

Piera, Eva, Calpe, Juan C., Brillas, Enric, Domènech, Xavier and Peral José, (2000) “2,4-Dichlorophenoxyacetic acid degradation by catalyzed ozonation: TiO2/UVA/O3 and Fe(II)/UVA/O3 systems”, Applied Catalysis B: Environmental Vol. 27, p. 169–177.

Pines,D.S., Reckhow, D.A. (2002), “Effect of Dissolved Co(II) on the Ozonation of Oxalic Acid” Environmental Science and Technology Vol.36, p. 4046–4051.

Qu, X., Zheng, J., Zhang, Y., (2007), “Catalytic ozonation of phenolic wastewater with activated carbon fiber in a fluid bed reactor”, Journal of Colloid and Interface Sci., Vol. 309, pp. 429-434.

Rivas F.J., Beltran F.J., Vera, E., Gimeno, O., (2004), “Aqueous ozone decomposition onto a Co2O3-alumina supported catalyst“, Journal of Environmental Science and Health Part A: Toxic/Hazardous Substances and Environmental Engineering, Vol. 39, p. 2915–2924.

Rosal, Roberto, Gonzalo, Maria S., Rodriguez, Antonio, Perdigon-Melon, Jose Antonio, Garcia-Calvo Eloy, (2010), “Catalytic ozonation of atrazine and linuron on MnOx/Al2O3 and MnOx/SBA-15 in a fixed bed reactor”, Chemical Engineering Journal, Vol. 165 p. 806–812.

Rosenfeldt, Erik, Karl, J., Linden, G., Canonicaa, S., Gunten, Urs von, (2006), “Comparison of the efficiency of ‧OH radical formation during ozonation and the advanced oxidation processes O3/H2O2 and UV/H2O2”, Water research Vol. 40 p. 3695 – 3704.

Sales, L.S., Robles-Dutenhefner, P.A., Nunes D.L., Mohallem N.D.S., Gusevskaya E.V., Sousa E.M.B., (2003), “Characterization and catalytic activity studies of sol–gel Co–SiO2 nanocomposites”, Materials Characterization Vol.50, p.95– 99.

Sauleda, R. and Brillas, E., (2001), “Mineralization of aniline and 4-chlorophenol in acidic solution by ozonation catalyzed with Fe2+ and UVA light” Applied Catalysis B: Environmental Vol. 29 p.135–145.

Stephen, E., Duirk, Richard, Valentine, L., (2006), “Modeling dichloroacetic acid formation from the reaction of monochloramine with natural organic matter”, Water Res. Vol. 40, p. 2667 – 2674.

Stumm, W., (1992), “Chemistry of the Soild-Water Interface”, John Wiley & Sons, New York, p. 15–20.

Świetlik, J. and Sikorska, E., (2005), “Characterization of Natural Organic Matter Fractions by High Pressure Size-Exclusion Chromatography, Specific UV Absorbance and Total Luminescence Spectroscopy”, Polish Journal of Environmental Studies Vol. 15, p.145-153.

Tan, H., Xue, Jun Min, Shuter, B., Li, Xu, and Wang, John, (2010), “Synthesis of PEOlated Fe3O4@SiO2 Nanoparticles via Bioinspired Silification for Magnetic Resonance Imaging”, Adv. Funct. Mater., Vol. 20, p. 722–731.

Tong, Shao-Ping, Shi, Rui, Zhang, Hua, Ma, Chun-an, (2011), ” Kinetics of Fe3O4–CoO/Al2O3 catalytic ozonation of the herbicide 2-(2,4-dichlorophenoxy) propionic acid”, Journal of Hazardous Materials Vol. 185, P. 162–167.

Tseng, Jyi-Yeong, Chang Ching-Yuan, Chen, Yi-Hung, Chang, Chiung-Fen and Chiang, Pen-Chi, (2008), “Synthesis of micro-size magnetic polymer adsorbent and its application for the removal of Cu(II) ion, Colloids and Surfaces A: Physicochem. Eng. Aspects, Vol. 295 p. 209–216.

Villase ˜nor, J., Reyes, P., Pecchi, G., (2002), “Catalytic and photocatalytic ozonation of phenol on MnO2 supported catalysts” Catal. Today Vol. 76 p. 121–131.

Wang K., Guo J., Yang M., Junji H., Deng R., (2009), “Decomposition of two haloacetic acids in water using UV radiation, ozone and advanced oxidation processes”, Journal of Haz. Mat., Vol. 162, pp. 1243-1248.

Westerhoff,P., Mezyk, S.P., Cooper, W.J., and Minakata, D., (2007), “Electron pulse radiolysis determination of hydroxyl radical rate constants with Suwannee River fulvic acid and other dissolved organic matter isolates”, Environ. Sci. Technol. Vol. 41, p. 4640–4646.

Wu, Chung-Hsin, Kuo, Chao-Yin and Chang Chung-Liang, (2008), “Homogeneous catalytic ozonation of C.I. Reactive Red 2 by metallic ions in a bubble column reactor”, Hazardous Materials, Vol. 154 p. 748–755.

Yang, Li, Hu, Chun, Nie, Yulun and Qu, Jiuhui, (2009), “Catalytic Ozonation of Selected Pharmaceuticals over Mesoporous Alumina-Supported Manganese Oxide”, Environ. Sci. Technol.,Vol. 43 (7), p. 2525–2529.

Yangm, Ma, Y. J., Qin, Q., Zhai, X., (2010), “Degradation of nitrobenzene by nano-TiO2 catalyzed ozonation”, J. Mol. Catal. A: Chem. Vol. 267 p.41–48.

Zazouli, M. A., Nasseri, S., Mahvi, A.H., Mesdaghinia A.R., Younecian, M. and Gholami, M., (2007), “Determination of hydrophobic and hydrophilic fractions of natural organic matter in raw water of jalalieh and tehranspars water treatment plants (tehran)”, Journal of Applied Sciences, Vol. 7, p. 2651-2655.


Zhang, Tao, Li, Chunjuan, Ma, Jun, Tian, Hai, Qiang, Zhimin, (2008), “Surface hydroxyl groups of synthetic a-FeOOH in promoting ●OH generation from aqueous ozone: Property and activity relationship”, Applied Catalysis B: Environmental Vol. 82, p. 131–137.

Zhao, Lei, Sun, Zhizhong, Ma, Jun and Liu, Huiling, (2009), “Enhancement Mechanism of Heterogeneous Catalytic Ozonation by Cordierite-Supported Copper for the Degradation of Nitrobenzene in Aqueous Solution”, Environ. Sci. Technol., Vol. 43, p. 2047–2053.

Zhao, Lei, Sun, Zhizhong, Ma, Jun, Liu, Huiling, (2010) ”Influencing mechanism of bicarbonate on the catalytic ozonation of nitrobenzene in aqueous solution by ceramic honeycomb supported manganese”, Journal of Molecular Catalysis A: Chemical, Vol. 322, p. 26-32.

Zhou, Junfeng, Meng, Lingjie, Lu, Qinghua, Fu, Jianwei and Huang, Xiaobin, (2009), “Superparamagnetic submicro- megranates: Fe3O4 nanoparticles coated with highly cross-linked organic/inorganic hybrids”, Chem. Commun., p. 6370–6372.

Zularisam, A.W., Ismail, A.F., Salim, M.R., Sakinah, M. and Ozaki, H., (2007), “The effects of natural organic matter (NOM) fractions on fouling characteristics and flux recovery of ultrafiltration membranes”, Desal., Vol. 212, p. 191-208.

蔡宜穎,(2009),”The investigation of ORP and free radical mechanisms on ozonation and ozonation combined with ultrasonic processes”,東海大學環境科學與工程所碩士論文。

張勳鍊,(2010),“Study of degradation of natural organic matters (NOMs) and reduction of disinfection byproduct (DBPs) in ozonation by design of experiment (DOE) and hydroxyl radicals”, 東海大學環境科學與工程所碩士論文。
楊平義,(2000),“金屬離子對臭氧化分解2-氯酚效能增進之探討與研究”,國立中央大學環境工程所碩士論文。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top