(34.237.52.11) 您好!臺灣時間:2021/05/18 12:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:劉盈孜
研究生(外文):Liu, Ying Tzu
論文名稱:製備具氨基之磁性吸附劑及其對銅離子吸附之研究
論文名稱(外文):Preparation of the Amino Functionalized Magnetic Adsorbent and its Application on Adsorption of Copper Ion
指導教授:張瓊芬張瓊芬引用關係
指導教授(外文):Chang, Chiung Fen
口試委員:張慶源張祖恩官文惠秦靜如張瓊芬
口試日期:2011-07-14
學位類別:碩士
校院名稱:東海大學
系所名稱:環境科學與工程學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:78
中文關鍵詞:間-氨基丙三甲基羥矽烷磁性吸附
外文關鍵詞:copperadsorptionAPTMSsuperparamagnetic hybrid nanoparticlesgraftingco-condensation
相關次數:
  • 被引用被引用:2
  • 點閱點閱:289
  • 評分評分:
  • 下載下載:32
  • 收藏至我的研究室書目清單書目收藏:0
超順磁性有機-無機混合材料為現今相當新穎的奈米材料之一,因同時具備有機與無機的功能性,在應用上會比單一成分的奈米材料更加廣泛且多樣化。目前超順磁性有機-無機混合材料較多應用在生物醫學方面,對於環境上的應用研究仍然相當的有限,因此本研究之目的在於研發出能適用在水體環境中之磁性混合材料,不僅對水體環境中的重金屬離子具有吸附能力且可輕易的利用外加磁場進行固液分離後回收再利用。本研究首先將帶有氨基之矽烷偶合劑(APTMS)利用嫁接與共聚兩種不同的合成方式複合在磁性載體(SiO2/Fe3O4)上後分別獲得G-MNH2及C-MNH2磁性材料,爾後進行對Cu(II)吸附行為,並以Cu(II)之吸附量作為最佳合成參數之指標。
材料表面物化特性之鑑定利用傅立葉轉換紅外光譜儀、元素分析儀、X-ray繞射儀、超導量子干涉磁量儀、熱重分析儀、電泳、比表面積分析儀與穿透式電子顯微鏡。以假一階動力方程式(pseudo-first-order equation)、假二階動力方程式(pseudo-second-order equation)與Elovich rate equation等三種動力式模擬Cu(II)在磁性混合材料上之吸附動力行為。以Langmuir與Freundlich isotherm兩種等溫吸附方程式模擬G-MNH2與C-MNH2對Cu(II)之吸附行為。實驗結果顯示,G-MNH2最佳APTMS複合劑量為3.04 mM/g APTMS及C-MNH2最佳APTMS複合劑量為3.23 mM/g APTMS。且經由傅立葉轉換紅外光譜儀得知在波數1537及1634 cm-1可觀察到氨基吸收波峰的存在,並從X-ray繞射儀圖譜中得知合成出之磁性混合材料其鐵氧化物之晶相為Fe3O4的磁鐵礦相。超導量子干涉磁量儀結果顯示G-MNH2與C-MNH2之飽合磁化強度分別為26.4與17.6 emu/g,且此兩種材料皆為超順磁性。熱重分析儀分析得知G-MNH2與C-MNH2之熱重損失分別為10.5與11.4 %。兩種磁性混合材料之等電位點皆落在pH值為7.1。比表面積分別為25.64與23.01 m2/g,且其氮氣吸脫附曲線圖顯示本研究合成出之材料皆為無孔磁性混合材料。吸附動力方程式上以假二階為最佳之模擬動力式,且以Langmuir isotherm最為符合G-MNH2與C-MNH2之等溫吸附行為。以及在酸性條件下對Cu(II)之吸附量以pH落在5.5~6.5之間可有一最佳吸附效果。並且在進行三次完整之吸脫附實驗後,G-MNH2與C-MNH2對Cu(II)之再吸附率只為原先的26與30%,有一非常明顯下降的趨勢。在經過三次脫附實驗中其C-MNH2之脫附率都可達到50%以上,而G-MNH2則在第三次的脫附率稍微偏低。本研究成功的利用嫁接與共聚兩種方式將APTMS共價鍵結在磁性載體上,並應用於Cu(II)離子之吸附去除,且深具回收利用之可行性。
Superparamagnetic hybrid nanoparticles have played a prominent role in materials chemistry because they have combined organic and inorganic capability during the last decade. Superparamagnetic hybrid nanoparticles is widely used in the department of biomedical, but not many used in the environment. In this study, our aim is synthesized an innovative technology involving solid-liquid phase separation, and which has the ability to adsorption of the aqueous heavy metals. We can make SiO2/Fe3O4 magnetic materials functionalized with APTMS by grafting and co-condensation method, and the samples were designated as G-MNH2 and C-MNH2, respectively. Furthermore, copper was used as an indicator to test the performance of the adsorption process.
The physicochemical properties of the resulting materials can be identified by means of Fourier Transform Infrared Spectroscopy, Elemental Analyzer, X-ray Diffractometer, Superconducting Quantum Interference Device, Thermogravimetric analyzer, Electrophoresis, Transmission Electron Microscopy and Accelerated Surface Area and Porosimetry. The kinetic study of copper adsorption on G-MNH2 and C-MNH2 by using three common kinetic models: the pseudo-first-order, the pseudo-second-order equations and Elovich rate equation. Two parameter model Langmuir and Freundlich isotherms were used to describe the G-MNH2 and C-MNH2 in aqueous copper in the solution. G-MNH2 and C-MNH2 which the optimal APTMS loading was 3.04 mM/g and 3.23 mM/g, respectively. The peak at 1537 and 1634 cm-1 was attributed to N-H bending vibration. The XRD analysis results of the magnetic adsorbent were magnetite phase of Fe3O4. The SQUID results exhibit 26.4 and 17.6 emu/g, and both of these samples were reveal a typical for superparamagnetism. Mass losses for G-MNH2 and C-MNH2 materials were 10.5 and 11.4 %. The BET surface area for materials G-MNH2 and C-MNH2 results in 25.64 and 23.01 m2/g.
Copper ions removed by G-MNH2 and C-MNH2 followed the pseudo-second-order equation kinetics, and in good agreement with the Langmuir isotherm model. The optimal solution pH was found to be in the range 5-6 for copper adsorption in acidity conditions. The adsorption capacity of the recycled G-MNH2 and C-MNH2 exhibited a loss of about 74 and 70 % in the third cycle, respectively. This study demonstrated that novel hybrid magnetic materials were successfully synthesized by grafting and co-condensation method and applied on the adsorption of copper ions.

中文摘要  I
英文摘要 II
目錄  III
圖目錄  VI
表目錄  IX

第一章 緒論 1
1.1 研究背景 1
1.2 研究目的 2
1.3 研究流程 3

第二章 文獻回顧 4
2.1 銅(II)之簡介 4
2.1.1 銅(II)之水化學 4
2.1.2 銅之污染來源 5
2.1.3 銅之毒性及對動植物的影響 5
2.2 有機矽烷偶合劑之介紹 5
2.2.1 有機矽烷偶合劑之種類 5
2.2.2 有機矽烷偶合劑之反應原理 7
2.2.3 表面修飾化後官能基之應用 11
2.3 吸附總論 13
2.3.1 吸附基本理論 13
2.3.2 影響吸附效率之因素 13
2.3.3 吸附動力理論 14
2.3.4 等溫吸附方程式 15
2.4 軟硬酸鹼理論(HSAB) 18

第三章 實驗材料與方法 19
3.1 實驗藥品 19
3.2 實驗設備 20
3.3 磁性混合材料之合成步驟 21
3.3.1 磁性載體 (SiO2/Fe3O4)之製備步驟 21
3.3.2 磁性混合材料(G-MNH2)之製備步驟—嫁接法 23
3.3.3 磁性混合材料(C-MNH2)之製備步驟—共聚法 23
3.4 Cu(II)儲備溶液與檢量線之配製 24
3.4.1 Cu(II)溶液之配製 24
3.4.2 Cu(II)檢量線之配製 24
3.4.3 Cu(II)吸附實驗 25
3.4.4 Cu(II)脫附實驗 25
3.4.5 磁性混合材料之再生試驗 25
3.5 磁性混和材料之物化特性分析所使用到的儀器 28
3.5.1 表面官能基分析 28
3.5.2 元素分析 28
3.5.3 晶相結構 29
3.5.4 飽和磁化強度 29
3.5.5 熱重分析 29
3.5.6 界達電位 29
3.5.7 穿透式電子顯微鏡 29
3.5.8 比表面積分析 30

第四章 結果與討論 31
4.1 磁性混合材料之物化特性鑑定 31
4.1.1 磁性混合材料之表面官能基的鑑定 31
4.1.2 磁性混合材料之元素分析 32
4.1.2.1 G-MNH2之元素分析 32
4.1.2.2 C-MNH2之元素分析 32
4.1.3 磁性混合材料之晶相鑑定 36
4.1.4 磁性混合材料之飽和磁化強度 37
4.1.5 磁性混合材料之熱重分析 39
4.1.6 磁性混合材料之界達電位 41
4.1.7 磁性混合材料之表面結構觀察 42
4.1.8 磁性混合材料之比表面積分析 43
4.2 磁性混合材料對Cu(II)吸附動力行為 46
4.2.1 G-MNH2對Cu(II)之吸附動力行為模擬 46
4.2.2 C-MNH2對Cu(II)之吸附動力行為模擬 46
4.3 磁性混合材料對Cu(II)之等溫吸附 55
4.3.1 G-MNH2對Cu(II)之等溫吸附 55
4.3.2 C-MNH2對Cu(II)之等溫吸附 55
4.3.3 SiO2/Fe3O4、G-MNH2與C-MNH2對Cu(II)之Langmuir等溫吸附 55
4.4 不同pH值下磁性混合材料對Cu(II)之吸附 64
4.5 磁性混合材料脫附率及再生使用率之探討 65

第五章 結論與建議 67
5.1 結論 67
5.2 建議 68
參考文獻 69
附錄一 73
附錄二 75
附錄三 76
附錄四 78

Aguado, J.; Arsuaga, J. M.; Arencibia, A.; Lindo, M.; Gascon, V., Aqueous heavy metals removal by adsorption on amine-functionalized mesoporous silica. Journal of Hazardous Materials 2009, 163 (1), 213-221.

Antonucci, J. M.; Dickens, S. H.; Fowler, B. O.; Xu, H. H. K.; McDonough, W. G., Chemistry of silanes: Interfaces in dental polymers and composites. Journal of Research of the National Institute of Standards and Technology 2005, 110 (5), 541-558.

Cherkouk, C.; Rebohle, L.; Skorupa, W.; Strache, T.; Reuther, H.; Helm, M., Spraying spin coating silanization at room temperature of a SiO2 surface for silicon-based integrated light emitters. Journal of Colloid and Interface Science 2009, 337 (2), 375-380.

Colilla, M.; Izquierdo-Barba, I.; Sanchez-Salcedo, S.; Fierro, J. L. G.; Hueso, J. L.; Vallet-Regi, M., Synthesis and Characterization of Zwitterionic SBA-15 Nanostructured Materials. Chemistry of Materials 2010, 22 (23), 6459-6466.

Ek, S.; Iiskola, E. I.; Niinisto, L.; Vaittinen, J.; Pakkanen, T. T.; Root, A., A Si-29 and C-13 CP/MAS NMR study on the surface species of gas-phase-deposited gamma-aminopropylalkoxysilanes on heat-treated silica. Journal of Physical Chemistry B 2004, 108 (31), 11454-11463.

Kim, Y. H.; Lee, B.; Choo, K. H.; Choi, S. J., Selective adsorption of bisphenol A by organic-inorganic hybrid mesoporous silicas. Microporous and Mesoporous Materials 2011, 138 (1-3), 184-190.

Kumar, G. P.; Kumar, R. A.; Chakraborty, S.; Ray, M., Uptake and desorption of copper ion using functionalized polymer coated silica gel in aqueous environment. Separation and Purification Technology 2007, 57 (1), 47-56.

Lam, K. F.; Chen, X. Q.; McKay, G.; Yeung, K. L., Anion Effect on Cu2+ Adsorption on NH2-MCM-41. Industrial & Engineering Chemistry Research 2008, 47 (23), 9376-9383.


Lam, K. F.; Chen, X.; Fong, C. M.; Yeung, K. L., Selective mesoporous adsorbents for Ag+/Cu2+ separation. Chemical Communications 2008, (17), 2034-2036.

Lan, F.; Liu, K. X.; Jiang, W.; Zeng, X. B.; Wu, Y.; Gu, Z. W., Facile synthesis of monodisperse superparamagnetic Fe3O4/PMMA composite nanospheres with high magnetization. Nanotechnology 2011, 22 (22).

Lim, M. H.; Stein, A., Comparative studies of grafting and direct syntheses of inorganic-organic hybrid mesoporous materials. Chemistry of Materials 1999, 11 (11), 3285-3295.

Lin, Y. F.; Chen, H. W.; Lin, K. L.; Chen, B.; Chiou, C., Application of magnetic particles modified with amino groups to adsorb copper ions in aqueous solution. Journal of Environmental Sciences-China 2011, 23 (1), 44-50.

Liu, J.; Feng, X. D.; Fryxell, G. E.; Wang, L. Q.; Kim, A. Y.; Gong, M. L., Hybrid mesoporous materials with functionalized monolayers. Advanced Materials 1998, 10 (2), 161-+.

Luechinger, M.; Prins, R.; Pirngruber, G. D., Functionalization of silica surfaces with mixtures of 3-aminopropyl and methyl groups. Microporous and Mesoporous Materials 2005, 85 (1-2), 111-118.

Manu, V.; Mody, H. M.; Bajaj, H. C., Effect of Thermal Treatment of Silica Gels on Their Amino Functionalization and Subsequent Adsorption Properties for Cu2+ from Aqueous Solution of Copper Sulfate. Industrial & Engineering Chemistry Research 2010, 49 (17), 8184-8191.

Manu, V.; Mody, H. M.; Bajaj, H. C.; Jasra, R. V., Adsorption of Cu2+ on Amino Functionalized Silica Gel with Different Loading. Industrial & Engineering Chemistry Research 2009, 48 (19), 8954-8960.

Park, S. S.; Park, Y. K.; Choe, S. J.; Park, D. H., Quantitative incorporation of Pt nanoparticle by coordination of Pt precursor with APTMS-anchored SiMCM-41. Journal of Sol-Gel Science and Technology 2007, 42 (1), 35-40.



Photong, S.; Boonamnuayvitaya, V., Enhancement of formaldehyde degradation by amine functionalized silica/titania films. Journal of Environmental Sciences-China 2009, 21 (12), 1741-1746.

Prieto-Simon, B.; Armatas, G. S.; Pomonis, P. J.; Nanos, C. G.; Prodromidis, M. I., Metal-dispersed xerogel-based composite films for the development of interference free oxidase-based biosensors. Chemistry of Materials 2004, 16 (6), 1026-1034.

Vargas, A.; Shnitko, I.; Teleki, A.; Weyeneth, S.; Pratsinis, S. E.; Baiker, A., Structural dependence of the efficiency of functionalization of silica-coated FeOx magnetic nanoparticles studied by ATR-IR. Applied Surface Science 2011, 257 (7), 2861-2869.

Veli, S.; Alyuz, B., Adsorption of copper and zinc from aqueous solutions by using natural clay. Journal of Hazardous Materials 2007, 149 (1), 226-233.

Wright, J. D.; Sommerdijk, N. A., Sol-Gel Materials Chemistry and Applications. Eindhoven University of Technology. Transferred to Digital Printing 2002.

Wu, Z. J.; Joo, H.; Ahn, L. S.; Haam, S.; Kim, J. H.; Lee, K., Organic dye adsorption on mesoporous hybrid gels. Chemical Engineering Journal 2004, 102 (3), 277-282.

Wu, Z. J.; Xiang, H.; Kim, T.; Chun, M. S.; Lee, K., Surface properties of submicrometer silica spheres modified with aminopropyltriethoxysilane and phenyltriethoxysilane. Journal of Colloid and Interface Science 2006, 304 (1), 119-124.

Yantasee, W.; Lin, Y. H.; Fryxell, G. E.; Alford, K. L.; Busche, B. J.; Johnson, C. D., Selective removal of copper(II) from aqueous solutions using fine-grained activated carbon functionalized with amine. Industrial & Engineering Chemistry Research 2004, 43 (11), 2759-2764.

Zanjanchi, M. A.; Ebrahimian, A.; Arvand, M., Sulphonated cobalt phthalocyanine-MCM-41: An active photocatalyst for degradation of 2,4-dichlorophenol. Journal of Hazardous Materials 2010, 175 (1-3), 992-1000.

Zhang, C.; Wangler, B.; Morgenstern, B.; Zentgraf, H.; Eisenhut, M.; Untenecker, H.; Kruger, R.; Huss, R.; Seliger, C.; Semmler, W.; Kiessling, F., Silica- and alkoxysilane-coated ultrasmall superparamagnetic iron oxide particles: A promising tool to label cells for magnetic resonance imaging. Langmuir 2007, 23 (3), 1427-1434.

Zhang, S. X.; Niu, H. Y.; Cai, Y. Q.; Zhao, X. L.; Shi, Y. L., Arsenite and arsenate adsorption on coprecipitated bimetal oxide magnetic nanomaterials: MnFe2O4 and CoFe2O4. Chemical Engineering Journal 2010, 158 (3), 599-607.

Zou, H.; Wu, S. S.; Shen, J., Polymer/silica nanocomposites: Preparation, characterization, properties, and applications. Chemical Reviews 2008, 108 (9), 3893-3957.

邱昱維,“α-Al2O3粉末披覆γ-氨丙基三乙氧基矽烷耦合劑之研究”,碩士論文,成功大學資源工程研究所,台南市,2005。

李書旗,“以超重力旋轉填充床吸附去除水體中農藥之研究”,碩士論文,東海大學環境科學與工程學系研究所,台中市,2007。

胡文瑋,“檸檬酸對於甲殼素吸附及分離銅、鎘離子之影響”,碩士論文,大同大學化學工程研究所,台北市,2005。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 1. 王爾敏,〈經世思想之義界問題〉,《中央研究院近代史研究所集刊》13,1984.06,頁27-31。
2. 2. 丘為君,〈批判的漢學與漢學的批判:章太炎對考據學的反省及對戴震漢學的闡釋〉,《清華學報》,29:3,(臺北:1999.09),頁321-364。
3. 3. 丘為君,〈清代思想史「研究典範」的形成、特質與義涵〉,《清華學報》,24:4(臺北:1994.12),頁451-494。
4. 4. 丘為君、張運宗,〈戰後台灣學界對經世問題的探討與反省〉,《新史學》,7:2(臺北:1996.06),頁181-231。
5. 6. 古偉瀛,〈顧炎武經世思想的特色〉,《國立台灣大學歷史學系學報》13(臺北:1981.07),頁421-448。
6. 7. 田富美,〈論顧炎武「經學即理學」之意涵〉,《哲學與文化》,28:3(臺北:2001.03),頁268-278+287。
7. 9. 何冠彪,〈清代前期君主對官私史學的影響〉,《漢學研究》,16:1(臺北:1998.06),頁155-184。
8. 11. 吳展良,〈傅斯年學術觀念中的反形式理則傾向〉,《臺大歷史學報》,20(臺北:1996.11),頁163-230。
9. 12. 李東華,〈方豪教授與香港學界的交往及其影響(一九五○∼八○)〉,《臺大文史哲學報》2(臺北:2005.05),頁321-345。
10. 13. 李東華,〈方豪與現代中國史學研究的轉變〉,《臺大歷史學報》,21(臺北:1997.12),頁261-272。
11. 14. 李貴生,〈論乾嘉學派的支派問題——兼論學派的一般性質〉,《書目季刊》,33:1(臺北:1999.06),頁51-66。
12. 15. 杜維運,〈中國傳統史學的經世精神〉,《歷史月刊》,3,(臺北:1988.04),頁20-23。
13. 16. 侯剛,〈教澤閎深 青春長在——啟功先生尊師重教的故事〉,《國文天地》,21:7(臺北:2005.12)頁10-18。
14. 17. 孫劍秋,〈惠棟「易」學著作、特色及其貢獻述評〉,《國立臺北師範學院學報. 人文藝術類》16:1,(臺北:2003.03),頁55-78。
15. 18. 張循,〈漢學內部的「漢宋之爭」--從陳澧的「漢宋調和」看清代思想史上「漢宋之爭」的深層涵義〉,《漢學研究》27:4=59,(臺北:2009.12),頁295-327。