跳到主要內容

臺灣博碩士論文加值系統

(44.200.168.16) 您好!臺灣時間:2023/04/02 00:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林志謙
研究生(外文):Zhi-Qian Lin
論文名稱:溴化鋰吸收式冰水機的熱力學分析與熱力經濟學最適化設計
論文名稱(外文):Thermodynamic Analysis and Thermoeconomic Optimization of a LiBr Absorption Chiller
指導教授:鄭智成鄭智成引用關係
口試委員:林顯聖王國彬王子奇
口試日期:2011-07-21
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:99
中文關鍵詞:吸收式冰水機可用能熱力經濟學最適化設計結構法
外文關鍵詞:absorption chillerexergythermoeconomicoptimizationstructural
相關次數:
  • 被引用被引用:1
  • 點閱點閱:420
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要是對溴化鋰吸收式冰水機做熱力學分析與熱力經濟學最適化設計,首先在每個單元熱交換器依造不同的熱傳性質和質傳性質做質量平衡、能量平衡和其它相關方程式建立起溴化鋰吸收式冰水機的模式。在模式建立後將對吸收式冰水機做熱力學分析,分析在每個單元系統中的不可逆性(irreversibility),並對各種不同狀態下進行模擬,探討在不同操作條件下對整個吸收式冰水系統性能係數(COP)及可用能效率( ex y )的影響。最後將對整個吸收式冰水機使用熱力經濟學的概念去設計,此方法即為結構法,結構法結合了熱力學上的考量和經濟學上的最適化,此方法的好處是能夠各別單元做最適化,不必一次考慮總系統的最適化。結構法主要是目標函數的推導配合上CSB 的使用可以得到各別單元最適化熱交換器面積,最後將使用修改型的結構法和一般型的結構法結果做比較。最適化模擬的結果顯示,整個溴化鋰吸收式冰水機的COP 和總費用都將會得到改善,而可用能效率值會隨著不同操作時間變化而得到不同值。

This study presents the thermodynamic analysis and thermoeconomic optimization of a lithium bromide (LiBr) absorption chiller. The mathematical model of a LiBr absorption chiller is first established based on mass balance relations, energy balance relations, and some constitutive equations of each heat exchanger unit. Then, this study analyzes the thermodynamic properties of the absorption chiller, and calculates the irreversibility and energy loss of each unit. Simulations of the absorption chiller are carried out to investigate the effects of various operating conditions on the coefficient of performance (COP) and exergy efficiency (Ψex) of the
absorption chiller.
Moreover, this study presents the optimum design of the absorption chiller using a thermoeconomic optimization method, known as the structural method. This method not only takes the thermodynamic considerations into account but also considers their economic optimization. The advantage of using the structural method for thermoeconomic optimization is that the various elements of the system can be optimized on their own. A simple equation to calculate the optimum area of each heat exchanger can be derived by introducing the structural coefficient bond (CSB), and a
modified optimization procedure is proposed. Simulation results show that the total cost and COP are improved after the optimization, while the improvement of exergy
efficiency depends on the operation time.

摘 要 I
ABSTRACT II
目 錄 V
圖目錄 VII
表目錄 XI
第一章 緒論 1
1.1前言 1
1.2文獻回顧 1
1.3研究動機 5
1.4章節組織 5
第二章 溴化鋰冰水機介紹 6
2.1 吸收式冰水機工作流體介紹 8
2.2 吸收式冰水機的運作原理 8
2.3 PTX線圖 9
第三章 模式建立和性能測試 11
3.1 質量守恆 12
3.2 壓力降 13
3.3 能量平衡 15
3.4 壓力和飽和溫度 19
3.5 動態模式中總方程式與假設條件 20
以下為模式中所需的22個方程式 20
3.6 動態模式性能分析 23
3.7溴化鋰吸收式冰水機性能測試 26
3.7.1 熱水進料溫度變化 29
3.7.2 冰水進料溫度變化 30
3.7.3 冷卻水進料溫度變化 31
3.7.4 熱水、冰水和冷卻水流率變化 32
第四章 熱力學分析 34
4.1可用能(EXERGY)介紹 35
4.2 可用能計算式 37
4.3 溴化鋰吸收式冰水機的可用能計算 39
4.3.1 物理可用能 39
4.3.2 化學可用能 45
4.4 溴化鋰吸收式冰水機的不可逆性 48
4.5 使用熱力學對吸收式冰水機性能測試 53
第五章 溴化鋰吸收式冰水機最適化設計 56
5.1 CSB介紹 56
5.2 CSB計算 58
5.3 熱力經濟學最適化 69
第六章 總結與未來展望 85
6.1 總結 85
6.2 未來展望 86
參考文獻 87
附錄A:由KOHLENBACH所得熱水溫度從75OC到85OC時吸收式冰水機動態模式變化 90
附錄B:吸收式冰水機的INPUT、OUTPUT和CONSTANT參數值 91
附錄C:KIM & INFANTE FERREIRA方程式中的參數 94
附錄D:使用線性回歸得到FEUERECKER所提供的計算熵參數 95
符號彙編 97


[1] Jeong S., Kang B. H. and Karng S. W., Dynamic simulation of an absorption heat pump for recovering low grade waste heat. Appl. Therm. Eng. 18 (1–2), 1–12.(1998)
[2] Bian J., Radermacher R.and Moran D., Transient simulation of an absorption chiller in a CHP system. Proceedings of the International Sorption Heat Pump
Conference, June 22–24. (2005)
[3] Kohlenbach P.and Ziegler F., A dynamic simulation model for transient absorption chiller performance. Part I: the model. Int. J. Refrigeration 31, 217–225. (2007).
[4] Kohlenbach P.and Ziegler F., A dynamic simulation model for transient absorption chiller performance. Part II: Numerical result. Int. J. Refrigeration 31, 226–233. (2007).
[5] Kohlenbach P., Solar Cooling Systems with Absorption Chillers: Control Strategies and Transient Chiller Performance. PhD thesis, Technical University of
Berlin, (2006).
[6] Kaita Y., Thermodynamic properties of lithium bromide-water solutions at high temperatures. Int. J. Refrigeration, Vol.24, pp.374-390 (2001)
[7] Feuerecker G., Scharfe J., Greiter I., Frank C. and Alfeld G., Measurement of thermophysical properties of LiBr-solutions at high temperature and concentrations. International Absorption Heat Pump conference ASME, p.493-499 (1993)
[8] Kim D. S., Infante Ferreira C. A., A Gibbs energy equation for LiBr aqueous solutions, Int. J. Refrigeration, Vol. 29, pp. 36-46 (2006)
[9] Sencan A., Yakut K. A. and Kalogirou S. A., Exergy analysis of lithium bromide/water absorption systems, renewable Energy 30 pp.645-657 (2005)
[10] Palacios-Bereche R., Gonzales R. and Nebra S. A., Exergy calculation of lithium bromide-water solution and its application in the exergetic evaluation of absorption refrigeration system LiBr-H2O, Int. J. Energy research.
(wileyonlinelibrary.com).DOI:10.1002/er.1790 (2010)
[11] Arora A. and Kaushik S. C., Theoretical analysis of LiBr/H2O absorption refrigeration systems. Int. J. Energy Research, Vol.33, pp.1321-1340 (2009)
[12] Tribus M. and Evans R. B., Principles of Desalination, Spiegler, K W , ed (Academic Press, New York), Chapter 2 (1966)
[13] Kotas T. J., EXERGY METHOD OF THERMAL AND CHEMICAL PLANT ANALYSIS., Butter-worths, London . (1985)
[14] KizIlkan O¨ ., Sencan A. and Kalogirou S. A., Thermoeconomic optimization of a LiBr absorption refrigeration system. Chemical Engineering and Processing:
Process Intensification 46, pp. 1376–1384. (2007)
[15] Misra R.D., Sahoo P.K. and Gupta A., Thermoeconomic optimization of a LiBr/H2O Absorption Chiller Using Structural Method., Int. J. of Energy Resources Technology Vol. 127, pp. 119-124, (2005)
[16] Gebreslassie B. H., Medrano M., Mendes F. and Boer D., Optimum heat exchanger area estimation using coefficients of structural bonds: Application to an absorption chiller., Int. J. Refrigeration 33, pp. 529-537, (2010)
[17] Ming-Tsun Ke, Absorption chiller, National Taipei University of Technology Department of Energy and Refrigerating Air-Conditioning Engineering
[18] Kim D. S. and Infante Ferreira C. A., Analytic modeling of steady state single-effect absorption cycles, Int. J. Refrigeration, Vol.31, NO.6,pp.1012-1020 (2008)
[19] Keith E. H., Reinhard R., Sanford A. K., Absorption chillers and heat pumps. pp.113-142 (1997)
[20] Marc A. R., Ibrahim D., EXERGY energy, environment and sustainable development. (2007)
[21] Magnus Holmgren, X STEAM FOR MATLAB, www.e-eng.com (2006)
[22] Boer D., Gebreslassie B. H., Medrano M. and Nogue´ S. M., Effect of internal heat recovery in ammonia–water absorption cooling cycles: exergy and structural analysis. Int. J. of Thermodynamics 12 (1), 17–27.(2009)
[23] Misra R.D., Sahoo P.K., Gupta, Thermoeconomic optimization of a single effect water/LiBr vapour absorption refrigeration system. Int. J. of Refrigeration 26, 158–169. (2003)
[24] Boer D., Exergy and Structural Analysis of an Absorption Cooling Cycle and the Effect of Efficiency Parameters., Int. J. Thermodynamics Vol. 8 (NO.4), pp.
191-198. (2005)

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top