|
[1] Jeong S., Kang B. H. and Karng S. W., Dynamic simulation of an absorption heat pump for recovering low grade waste heat. Appl. Therm. Eng. 18 (1–2), 1–12.(1998) [2] Bian J., Radermacher R.and Moran D., Transient simulation of an absorption chiller in a CHP system. Proceedings of the International Sorption Heat Pump Conference, June 22–24. (2005) [3] Kohlenbach P.and Ziegler F., A dynamic simulation model for transient absorption chiller performance. Part I: the model. Int. J. Refrigeration 31, 217–225. (2007). [4] Kohlenbach P.and Ziegler F., A dynamic simulation model for transient absorption chiller performance. Part II: Numerical result. Int. J. Refrigeration 31, 226–233. (2007). [5] Kohlenbach P., Solar Cooling Systems with Absorption Chillers: Control Strategies and Transient Chiller Performance. PhD thesis, Technical University of Berlin, (2006). [6] Kaita Y., Thermodynamic properties of lithium bromide-water solutions at high temperatures. Int. J. Refrigeration, Vol.24, pp.374-390 (2001) [7] Feuerecker G., Scharfe J., Greiter I., Frank C. and Alfeld G., Measurement of thermophysical properties of LiBr-solutions at high temperature and concentrations. International Absorption Heat Pump conference ASME, p.493-499 (1993) [8] Kim D. S., Infante Ferreira C. A., A Gibbs energy equation for LiBr aqueous solutions, Int. J. Refrigeration, Vol. 29, pp. 36-46 (2006) [9] Sencan A., Yakut K. A. and Kalogirou S. A., Exergy analysis of lithium bromide/water absorption systems, renewable Energy 30 pp.645-657 (2005) [10] Palacios-Bereche R., Gonzales R. and Nebra S. A., Exergy calculation of lithium bromide-water solution and its application in the exergetic evaluation of absorption refrigeration system LiBr-H2O, Int. J. Energy research. (wileyonlinelibrary.com).DOI:10.1002/er.1790 (2010) [11] Arora A. and Kaushik S. C., Theoretical analysis of LiBr/H2O absorption refrigeration systems. Int. J. Energy Research, Vol.33, pp.1321-1340 (2009) [12] Tribus M. and Evans R. B., Principles of Desalination, Spiegler, K W , ed (Academic Press, New York), Chapter 2 (1966) [13] Kotas T. J., EXERGY METHOD OF THERMAL AND CHEMICAL PLANT ANALYSIS., Butter-worths, London . (1985) [14] KizIlkan O¨ ., Sencan A. and Kalogirou S. A., Thermoeconomic optimization of a LiBr absorption refrigeration system. Chemical Engineering and Processing: Process Intensification 46, pp. 1376–1384. (2007) [15] Misra R.D., Sahoo P.K. and Gupta A., Thermoeconomic optimization of a LiBr/H2O Absorption Chiller Using Structural Method., Int. J. of Energy Resources Technology Vol. 127, pp. 119-124, (2005) [16] Gebreslassie B. H., Medrano M., Mendes F. and Boer D., Optimum heat exchanger area estimation using coefficients of structural bonds: Application to an absorption chiller., Int. J. Refrigeration 33, pp. 529-537, (2010) [17] Ming-Tsun Ke, Absorption chiller, National Taipei University of Technology Department of Energy and Refrigerating Air-Conditioning Engineering [18] Kim D. S. and Infante Ferreira C. A., Analytic modeling of steady state single-effect absorption cycles, Int. J. Refrigeration, Vol.31, NO.6,pp.1012-1020 (2008) [19] Keith E. H., Reinhard R., Sanford A. K., Absorption chillers and heat pumps. pp.113-142 (1997) [20] Marc A. R., Ibrahim D., EXERGY energy, environment and sustainable development. (2007) [21] Magnus Holmgren, X STEAM FOR MATLAB, www.e-eng.com (2006) [22] Boer D., Gebreslassie B. H., Medrano M. and Nogue´ S. M., Effect of internal heat recovery in ammonia–water absorption cooling cycles: exergy and structural analysis. Int. J. of Thermodynamics 12 (1), 17–27.(2009) [23] Misra R.D., Sahoo P.K., Gupta, Thermoeconomic optimization of a single effect water/LiBr vapour absorption refrigeration system. Int. J. of Refrigeration 26, 158–169. (2003) [24] Boer D., Exergy and Structural Analysis of an Absorption Cooling Cycle and the Effect of Efficiency Parameters., Int. J. Thermodynamics Vol. 8 (NO.4), pp. 191-198. (2005)
|