|
Part I REFERENCES
1Monk, P. M. S.; Mortimer, R. J.; Rosseinsky, D. R. Electrochromism and Electrochromic Devices, Cambridge University Press, Cambridge, UK, 2007. 2(a) Rauch, R. D. Electrochromic windows: an overview. Electrochim. Acta 1999, 44, 3165-3176; (b) Michaelis, A.; Berneth, H.; Haarer, D.; Kostromine, S.; Neigl, R.; Schmidt, R. Electrochromic dye system for smart window applications. Adv. Mater. 2001, 13, 1825-1828; (c) Heuer, H. W.; Wehrmann R.; Kirchmeyer, S. Electrochromic window based on conducting poly(3,4-ethylenedioxythiophene)- poly(styrene sulfonate). Adv. Funct. Mater. 2002, 12, 89-94; (d) Niklasson, G. A.; Granqvist, C.-G. Electrochromics for smart windows: thin films of tungsten oxide and nickel oxide, and devices based on these. J. Mater. Chem. 2007, 17, 127-156; (e) Baetens, R.; Jelle, B. P.; Gustavsen, A. Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: a stste-of-the-art review. Sol. Energy Mater. Sol. Cells 2010, 94, 87-105. 3(a) Rosseinsky, D. R.; Mortimer, R. J. Electrochromic systems and the prospects for devices. Adv. Mater. 2001, 13, 783-793; (b) Sonmez, G.; Wudl, F. Completion of the three primary colours: the final step toward plastic displays. J. Mater. Chem. 2005, 15, 20-22; (c) Mortimer, R. J.; Dyer, A. L.; Reynolds, J. R. Electrochromic organic and polymeric materials for display applications. Displays 2006, 27, 2-18; (d) Andersson, P.; Forchheimer, R.; Tehrani, P.; Berggren, M. Printable all-organic electrochromic active-matrix displays. Adv. Funct. Mater. 2007, 17, 3074-3082. 4Sonmez, G.; Sonmez, H. B. Polymeric electrochromics for data storage. J. Mater. Chem. 2006, 16, 2473-2477. 5(a) Bach, U.; Corr, D.; Lupo, D.; Pichot, F.; Ryan, M. Nanomaterials-based electrochromics for paper-quality displays. Adv. Mater. 2002, 14, 845-848; (b) Kobayashi, N.; Miur, S.; Nishimura, M.; Urano, H. Organic electrochromism for a new color electronic paper. Sol. Energy Mater. Sol. Cells 2008, 92, 136-139; (c) Tehrani, P.; Hennerdal, L.-O.; Dyer, A. L.; Reynolds, J. R.; Berggren, M. Improving the contrast of all-printed electrochromic polymer on paper displays. J. Mater. Chem. 2009, 19, 1799-1802. 6Beaupre, S.; Breton, A.-C.; Dumas, J.; Leclerc, M. Multicolored electrochromic cells based on poly(2,7-carbazole) derivatives for adaptive camouflage. Chem. Mater. 2009, 21, 1504-1513. 7(a) Smith, D. W. C. Transition metal oxide electrochromic materials and displays: a review: Part 1: oxide with anodic coloration. Displays 1982, 3, 3-32; (b) Smith, D. W. C. Transition metal oxide electrochromic materials and displays: a review: Part 2: oxide with anodic coloration. Displays 1982, 3, 67-80; (c) Mortimer, R. J. Electrochromic materials. Chem. Soc. Rev. 1997, 26, 147-156; (d) Mortimer, R. J. Organic electrochromic materials. Electrochim. Acta 1999, 44, 2971-2981; (e) Somani, P. S.; Radhakrishnan, S. Electrochromic materials and devices: present and future. Mater. Chem. Phys. 2002, 77, 117-133. 8(a) Sonmez, G. Polymeric electrochromics. Chem. Commun. 2005, 5251-5259; (b) Patra, A.; Bendikov, M. Polyselenophenes. J. Mater. Chem. 2010, 20, 422-433; (c) Beaujuge, P. M.; Reynolds, J. R. Color control in π-conjugated organic polymers for use in electrochromic devices. Chem. Rev. 2010, 110, 268-320. 9(a) Balan, A.; Baran, D.; Gunbas, G.; Durmus, A.; Ozyurt, F.; Toppare, L.One polymer for all: benzotriazole containing donor-acceptor type polymer as a multi-purpose material. Chem. Commun. 2009, 6768-6770; (b) Invernale, M. A.; Ding, Y.; Mamangun, D. M. D.; Yavus, M. S.; Sotzing, G. A. Preparation of conjugated polymers inside assembled solid-state devices. Adv. Mater. 2010, 22, 1379-1382; (c) Icli, M.; Pamuk, M.; Algi, F.; Onal, A. M.; Cihaner, A. Donor-acceptor polymer electrochromes with tunable colors and performance. Chem. Mater. 2010, 22, 4034-4044; (d) Koyuncu, S.; Usluer, O.; Can, M.; Demic, S.; Icli, S.; Serdar, N. Electrochromic and electroluminescent devices based on a novel branched quasi-dendric fluorine-carbazole-2,5-bis(2-thienyl)-1H-pyrrole system. J. Mater. Chem. 2011, 21, 2684-2693; (e) Dey, T.; Invernale, M.; Ding, Y.; Buyukmumcu, Z.; Sotzing, G. A. Poly(3,4-propylenedioxythiophene)s as a single platform for full color realization. Macromolecules 2011, 44, 2415-2417; (f) Icli, M.; Oztas, Z.; Algi, F.; Cihaner, A. A neutral state yellow to navy polymer electrochrome with pyrene scaffold. Org. Electron. 2011, 12, 1505-1511. 10(a) Thelallat, M. Star-shaped, dendrimeric and polymeric triarylamines as photoconductors and hole transport materials for electro-optical applications. Macromol. Mater. Eng. 2002, 287, 442-461. (b) Shirota, Y.; Kageyama, H. Charge carrier transporting molecular materials and their applications in devices. Chem. Rev. 2007, 107, 953-1010. 11(a) Chou, M.-Y.; Leung, M.-k.; Su, Y. O.; Chiang, C. L.; Lin, C.-C.; Liu, J.-H.; Kuo, C.-K.; Mou, C.-Y. Electropolymerization of starburst triarylamines and their application to electrochromism and electroluminescence. Chem. Mater. 2004, 16, 654-661; (b) Beaupre, S.; Dumas, J.; Leclerc, M. Toward the development of new textile/plastic electrochromic cells using triphenylamine-based copolymers. Chem. Mater. 2006, 18, 4011-4018; (c) Natera, J.; Otero, L.; D’Eramo, F.; Sereno, L.; Fungo, F.; Wang, N.-S.; Tsai, Y.-M.; Wong, K.-T. Synthesis and properties of a novel cross-linked electroactive polymer formed from a bipolar starburst monomer. Macromolecules 2009, 42, 626-635. 12(a) Cheng, S.-H.; Hsiao, S.-H.; Su, T.-H.; Liou, G.-S. Novel aromatic poly(amine-imide)s bearing a pendent triphenylamine group: synthesis, thermal, photophysical, electrochemical, and electrochromic characteristics. Macromolecules 2005, 38, 307-316; (b) Hsiao, S.-H.; Chang, Y.-M.; Chen, H.-W.; Liou, G.-S. Novel aromatic polyamides and polyimides functionalized with 4-tert-butyltriphenylamine groups. J. Polym. Sci., Part A: Polym. Chem. 2006, 44, 4579-4592; (c) Chang, C.-W.; Liou, G.-S.; Hsiao, S.-H. Highly stable anodic green electrochromic aromatic polyamides: synthesis and electrochromic properties. J. Mater. Chem. 2007, 17, 1007-1015; (d) Hsiao, S.-H.; Liou, G.-S.; Kung, Y.-C.; Yen, H.-J. High contrast ratio and rapid switching electrochromic polymeric films based on 4-(dimethylamino)triphenylamine-functionalized aromatic polyamides. Macromolecules 2008, 41, 2800-2808; (e) Kung, Y.-C.; Liou, G.-S.; Hsiao, S.-H. Synthesis and characterization of novel electroactive polyamides and polyimides with bulky 4-(1-adamantoxy)triphenylamine moieties. J. Polym. Sci. Part A: Polym. Chem. 2009, 47, 1740-1755; (f) Wang, H.-M.; Hsiao, S.-H.; Liou, G.-S.; Sun, C.-H. Synthesis, photoluminescene, and electrochromism of polyamides containing (3,6-di-tert-butylcarbazol-9-yl)triphenylamine units, J. Polym. Sci. Part A: Polym. Chem. 2010, 48, 4775-4789; (g) Kung, Y.-C; Hsiao, S.-H. Fluorescent and electrochromic polyamides with pyrenylamine chromophores. J. Mater. Chem. 2010, 20, 5481-5492; (h) Kung, Y.-C.; Hsiao, S.-H. Solution-processable, high-Tg, ambipolar polyimide electrochromics bearing pyrenylamine units. J. Mater. Chem. 2011, 21, 1746-1754; (i) Wang, H.-M.; Hsiao, S.-H. Enhanced redox stability and electrochromic properties of aromatic polyamides based on N,N-bis(4-carboxyphenyl)-N’,N’-bis(4-tert-butylphenyl)-1,4-phenylenediamine. J. Polym. Sci. Part A: Polym. Chem. 2011, 49, 337-351; (j) Yen, H.-J.; Lin, H.-Y.; Liou, G.-S. Novel starburst triarylamine-containing electroactive aramids with highly stable electrochroism in near-infrared and visible light regions. Chem. Mater. 2011, 23, 1874-1882; (k) Yen, H.-J.; Lin, K.-Y.; Liou, G.-S. Transmissive to black electrochromic aramids with high near-infrared and multicolor electrochromism based on electroactive tetraphenylbenzidine units. J. Mater. Chem. 2011, 21, 6230-6237. 13(a) Liou, G.-S.; Chang, C.-W. Highly stable anodic electrochromic aromatic polyamides containing N,N,N’,N’-tetraphenyl-p-phenylenediamine moieties: synthesis, electrochemical, and electrochromic properties. Macromolecules 2008, 41, 1667-1674; (b) Chang, C.-W.; Chung, C.-H.; Liou, G.-S. Novel anodic polyelectrochromic aromatic polyamides containing pendent dimethyl- triphenylamine moieties. Macromolecules 2008, 41, 8441-8451; (c) Chang, C.-W.; Liou, G.-S. Novel anodic electrochromic aromatic polyamides with multi-stage oxidative coloring based on N,N,N’,N’-tetraphenyl-p-phenylenediamine derivatives. J. Mater. Chem. 2008, 18, 5638-5646; (d) Yen, H.-J.; Liou, G.-S. Solution-processable novel near-infrared electrochromic aramatic polyamides based on electroactive tetraphenyl-p-phenylenediamine moieties. Chem. Mater. 2009, 21, 4062-4070; (e) Hsiao, S.-H.; Liou, G.-S.; Wang, H.-M. Highly stable electrochromic polyamides based on N,N-bis(4-aminophenyl)-N’,N’-bis(4-tert-butylphenyl)-1,4- phenylenediamine. J. Polym. Sci., Part A: Polym. Chem. 2009, 47, 2330-2343. 14(a) Lambert, C.; Noll, G. One- and two-dimensional electron transfer processes in triarylamines with multiple redox centers. Angew. Chem. Int. Ed. 1998, 37, 2107-2110; (b) Lambert, C.; Noll, G. The class II/III transition in triarylamine redox systems. J. Am. Chem. Soc. 1999, 121, 8434-8442; (c) Lambert, C.; Noll, G. Intervalence charge-transfer bands in triphenylamine-based polymers. Synth. Met. 2003, 139, 57-62. 15Yen, H.-J.; Guo, S.-M.; Liou, G.-S.; Chung, J.-C.; Liu, Y.-C.; Lu, Y.-F.; Zeng, Y.-Z. Mixed-valence class I transition and electrochemistry of bis(triphenylamine)-based aramids containing isolated ether-linkage. J. Polym. Sci., Part A: Polym. Chem. 2011, 49, 3805-3816. 16(a) Faccini, M.; Balakrishnan, M.; Diemeer, M. B. J.; Torosantucci, R.; Driessen, A.; Reinhoudt, D. N.; Verboom, W. Photostable nonlinear optical polycarbonates. J. Mater. Chem. 2008, 18, 5293-5300; (b) Liu, Y.-H.; Chen, C.; Yang, L.-M. Diazabutadiene: a simple and efficient ligand for copper-catalyzed N-arylation of aromatic amines. Tetrahedron Lett. 2006, 47, 9275–9278. 17Yamazaki, N.; Matsumoto, M.; Higashi, F. Studies on reactions of the N-phosphonium salts of pyridines. XIV. Wholly aromatic polyamides by the direct polycondensation reaction by using phosphites in the presence of metal salts. J. Polym. Sci. Polym. Chem. Ed. 1975, 13, 1373-1380.
Part II REFERENCES
1.(a) Polyimides; Wilson, D.; Stenzenberger, H. D.; Hergenrother, P. M., Eds.; Blackie: Glasgow and London, 1990; (b) Sroog, C. E. Polyimides. Prog. Polym. Sci. 1991, 16, 561-694; (c) Polyimides: Fundamentals and Applications; Ghosh, M. K.; Mittal, K. L. Eds.; Marcel Dekker: New York, 1996. 2.(a) Huang, S. J.; Hoyt, A. E. The synthesis of soluble polyimides. Trends Polym. Sci. 1995, 3, 262-271; (b) de Abajo, J.; de la Campa, J. G. Processable aromatic polyimides. Adv. Polym. Sci. 1999, 140, 23-59; (c) Ding, M. Isomeric polyimides. Prog. Polym. Sci. 2007, 32, 623-668; (d) Dhara, M. G.; Banerjee, S. Fluorinated high-performance polymers: Poly(arylene ether)s and aromatic polyimides containing trifluoromethyl groups. Prog. Polym. Sci. 2010, 35, 1022-1077. 3.(a) Eastmond, G. C.; Gibas, M.; Paprotny J. Pendant adamantly poly(ether imide)s: synthesis and a preliminary study of properties. Eur. Polym. J. 1999, 35, 2097-2106; (b) Ayala, D.; Lozano, A. E.; de Abajo, J.; de la Campa, J. G. Synthesis and characterization of novel polyimides with bulky pendant groups. J. Polym. Sci. Part A: Polym. Chem. 1999, 37, 805-814; (c) Reddy, D.S.; Chou, C.-H.; Shu, C.-F.; Lee, G.-H. Synthesis and characterization of soluble poly(ether imide)s based on 2,2’-bis(4-aminophenoxy)-9,9’-spirobifluorene. Polymer 2003, 44, 557-563; (d) Yin, D.-X.; Li, Y.-F.; Yang, H.-X.; Yang, S.-Y.; Fan, L.; Liu J.-G. Synthesis and characterization of novel polyimides derived from 1,1-bis[4-(4’-aminophenoxy)- phenyl]-1-[3”,5”-bis(trifluoromethyl)phenyl]-2,2,2-trifluoroethane Polymer 2005, 46, 3119-3127; (e) Lin, C.-H.; Lin, C.-H. Synthesis and properties of polyimides derived from 1,4-bis(4-aminophenoxy)-2-(6-oxido-6H-dibenz[c,e][1,2]oxa- phosphorin-6-yl)phenylene. J. Polym. Sci. Part A: Polym. Chem. 2007, 45, 2897-2912; (f) Zhang, Q.-Y.; Chen, G.; Zhang, S.-B. Synthesis and properties of novel soluble polyimides having a spirobisindane-linked dianhydride unit. Polymer 2007, 48, 2250-2256; (g) Zhang, Q.; Li, S.-H.; Li, W.-M.; Zhang, S.-B. Synthesis and properties of novel organosoluble polyimides derived from 1,4-bis(3,4-dicarboxyphenoxy)triptycene dianhydride and various aromatic diamines. Polymer 2007, 48, 6246-6253; (h) Chern, Y.-T.; Tsai, J.-Y. Low dielectric constant and high organosolubility of novel polyimides derived from unsymmetric 1,4-bis(4-aminophenoxy)-2,6-di-tert-butylbenzene. Macromolecules 2008, 41, 9556-9564; (i) Chern, Y.-T.; Tsai, J.-Y.; Wang, J.-J. High Tg and high organosolubility of novel unsymmetrical polyimides. J. Polym. Sci. Part A: Polym. Chem. 2009, 47, 2443-2452; (j) Lin, C.-H.; Chang, S.-L.; Peng, L.-A.; Peng, S.-P.; Chung, Y.-H. Organo-soluble phosphinated polyimides from asymmetric diamines. Polymer 2010, 51, 3899-3906; (k) Lin, C.-H.; Chang, S.-L.; Cheng, P.-W. Soluble high-Tg polyetherimides with good flame retardancy based on an asymmetric phosphinated etherdiamine. J. Polym. Sci. Part A: Polym. Chem. 2011, 49, 1331-1340. 4.(a) Liou, G.-S.; Hsiao, S.-H.; Ishida, M.; Kakimoto, M.; Imai, Y. Synthesis and properties of new aromatic poly(amine-imide)s derived from N,N’-bis(4-amino- phenyl)-N,N’-diphenyl-1,4-phenylenediamine. J. Polym. Sci. Part A: Polym. Chem. 2002, 40, 3815-3822; (b) Liaw, D.-J.; Hsu, P.-N.; Chen, W.-H.; Lin, S.-L. High glass transitions of new polyamides, polyimides, and poly(amide-imide)s containing a triphenylamine group: Synthesis and characterization. Macromolecules 2002, 35, 4669-4676; (c) Hsiao, S.-H.; Chang, Y.-M.; Chen, H.-W., Liou, G.-S. Novel aromatic polyamides and polyimides functionalized with 4-tert-butyltriphenylamine groups. J. Polym. Sci. Part A: Polym. Chem. 2006, 44, 4579-4592; (d) Li, W.-M.; Li, S.-H.; Zhang, Q.-Y.; Zhang, S.-B. Synthesis of bis(amine anhydride)s for novel high Tgs and organosoluble poly(amine imide)s by palladium-catalyzed amination of 4-chlorophthalic anhydride. Macromolecules 2007, 40, 8205-8211. 5.(a) Cheng, S.-H.; Hsiao, S.-H.; Su, T.-H.; Liou, G.-S. Novel aromatic poly(amine-imide)s bearing a pendent triphenylamine group: synthesis, thermal, photophysical, electrochemical, and electrochromic characteristics. Macromolecules 2005, 38, 307-316; (b) Liou, G.-S.; Hsiao, S.-H.; Chen, H.-W. Novel high-Tg poly(amide-imide)s bearing pendent N-phenylcarbazole units: synthesis and photophysical, electrochemical and electrochromic properties. J. Mater. Chem. 2006, 16, 1831-1842; (c) Chang, C.-W.; Yen, H.-J.; Huang, K.-Y.; Yeh, J.-M.; Liou, G.-S. Novel organosoluble aromatic polyimides bearing pendant methoxy-substituted triphenylamine moieties: synthesis, electrochromic, and gas separation properties. J. Polym. Sci. Part A: Polym. Chem. 2008, 46, 7937-7949; (d) Kung, Y.-C.; Liou, G.-S.; Hsiao, S.-H. Synthesis and characterization of novel electroactive polyamides and polyimides with bulky 4-(1-adamantoxy)- triphenylamine moieties. J. Polym. Sci. Part A: Polym. Chem. 2009, 47, 1740-1755; (e) Kung, Y.-C.; Hsiao, S.-H. Solution-processable, high-Tg, ambipolar polyimide electrochromics bearing pyrenylamine units. J. Mater. Chem. 2011, 21, 1746-1754; (f) Kung, Y.-C.; Lee, W.-F.; Hsiao, S.-H.; Liou, G.-S. New polyimides incorporated with diphenylpyrenylamine unit as fluorophore and redox-chromophore. J. Polym. Sci. Part A: Polym. Chem. 2011, 49, 2210-2221; (g) .Yen, H.-J.; Guo, S.-M.; Yeh, J.-M.; Liou, G.-S. Triphenylamine-based polyimides with trimethyl substituents for gas separation membrane and electrochromic applications. J. Polym. Sci. Part A: Polym. Chem. 2011, 49, 3637-3646. 6.(a) Ling, Q.-D.; Chang, F.-C.; Song, Y.; Zhu, C.-X.; Liaw, D.-J.; Chan, D. S.-H.; Kang, E.-T.; Neoh, K.-G. Synthesis and dynamic random acess memory behavior of a functional polyimide. J. Am. Chem. Soc. 2006, 128, 8732-8733; (b) Lee, T. J.; Chang, C.-W.; Hahm, S. G.; Kim, K.; Park, S.; Kim, D. M.; Kim, J.; Kwon, W.-S.; Liou, G,-S.; Ree, M. Programmable digital memory devices based on nanoscale thin films of a thermally dimensionally stable polyimide. Nanotechnology 2009, 20, 135204 (7pp); (c) Kuorosawa, T.; Chueh, C.-C.; Liu, C.-L.; Higashihara, T.; Ueda, M.; Chen, W.-C. High performance volatile polymeric memory devices based on novel triphenylamine-based polyimides containing mono- or dual-mediated phenoxy linkages. Macromolecules 2010, 43, 1236-1244; (d) Wang, K.-L.; Liu, Y.-L.; Shih, I-H.; Neoh, K.-G.; Kang, E.-T. Synthesis of polyimides containing triphenylamine-substituted triazole moieties for polymer memory applications. J. Polym. Sci. Part A: Polym. Chem. 2010, 48, 5790-5800. 7.Yen, H.-J.; Guo, S.-M.; Liou, G.-S.; Chung, J.-C.; Liu, Y.-C.; Lu, Y.-F.; Zeng, Y.-Z. Mixed-valence class I transition and electrochemistry of bis(triphenylamine)-based aramids containing isolated ether-linkage. J. Polym. Sci., Part A: Polym. Chem. 2011, 49, 3805-3816.
|