跳到主要內容

臺灣博碩士論文加值系統

(44.200.171.156) 您好!臺灣時間:2023/03/22 02:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭守倫
研究生(外文):Shou-Lun Cheng
論文名稱:新型含醚基連接雙三苯胺結構之芳香族聚醯胺與聚醯亞胺的合成和電致變色性質
論文名稱(外文):Synthesis and Electrochromic Properties of Novel Aromatic Polyamides and Polyimides Bearing Ether-linked Bis(triphenylamine) Units
指導教授:蕭勝輝
指導教授(外文):Sheng-Huei Hsiao
口試委員:陳志堅陳耀騰劉貴生
口試委員(外文):Jyh-Chien ChenYaw-Terng ChenGuey-Sheng Liou
口試日期:2011-07-29
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:81
中文關鍵詞:聚醯胺聚醯亞胺三苯胺電致變色光譜電化學電致變色元件
外文關鍵詞:polyamidespolyimidestriphenylamineelectrochromicspectroelectrochemicalelectrochromic device
相關次數:
  • 被引用被引用:0
  • 點閱點閱:180
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文包含兩個研究主題,主要探討由一種具有醚基連接雙三苯胺結構的二胺單體所衍生的芳香族聚醯胺(polyamides)與聚醯亞胺(polyimides)的合成及其電化學、光譜電化學和電致變色等性質。
第一部分在探討一種新型具有醚基連接雙三苯胺結構的二胺單體N,N-Di(4-aminophenyl)-N'',N''-diphenyl-4,4''-oxydianiline 的合成,並藉由磷酸化聚縮合反應法將此二胺單體與各種芳香族二羧酸聚合成一系列新型的芳香族聚醯胺。這些聚醯胺的固有黏度在0.31-0.44 dL/g之間,屬於非結晶性的材料,並且易溶於極性的有機溶劑如NMP、DMAc,因此可經由它們的溶液塗佈及烘乾後製得具有可撓曲性的高分子薄膜。這些聚醯胺展現出好的熱穩定性,它們的玻璃態轉移溫度範圍在218-253 oC,在溫度超過500 oC才有10%的熱重量損失,並且在氮氣下溫度到達800 oC時還有65%以上的焦碳殘留率。塗佈在ITO玻璃上的聚醯胺薄膜在乙腈溶液中的循環伏安測定結果顯示出在0.80~0.82 V和0.96~0.98 V附近有兩個成對且可逆的氧化還原峰。這一系列的聚醯胺薄膜展現出優異的電化學和電致變色穩定性,施加電壓範圍在0到1.2 V間薄膜顏色會從中性態的透明無色或淡黃色變成氧化態的綠色和紫色。這些高分子薄膜做成的電致變色元件具有高的變色效率和電致變色穩定度以及快速的顏色變化。
第二部分則在探討以上述具有醚基連接雙三苯胺結構的二胺單體為主體的聚醯亞胺的合成與特性。這些聚醯亞胺是由上述的二胺單體與各種芳香族二酐先進行開環加成聚合得到聚醯胺酸,然後再經由化學閉環和熱閉環而得。大部分的聚醯亞胺可以溶於有機溶劑,並且可由它們的溶液塗製成非晶型、具有可撓曲性的薄膜。聚醯胺酸的固有黏度範圍在0.47-0.88 dL/g之間。這一系列的聚醯亞胺展現出優異的熱穩定性,玻璃態轉移溫度範圍在227-273 oC之間,並且在溫度超過550 oC才會有10%熱重量損失。由高分子薄膜的循環伏安研究發現這些聚醯亞胺同時擁有p- 和 n-可摻雜並且具有多顏色電致變色的現象。


This thesis is aimed to synthesize and characterize an aromatic diamine monomer bearing the ether-linked bis(triphenylamine) [O(TPA)2] unit and its derived aromatic polyamides and polyimides. The electrochemical, spectroelectrochemical and electrochromic properties of the polymers have been investigated.
In the first part of this thesis, a new diamine monomer with the O(TPA)2 unit, namely N,N-di(4-aminophenyl)-N'',N''-diphenyl-4,4''-oxydianiline, was synthesized and reacted with various aromatic dicarboxylic acids via the phosphorylation polyamidation reaction leading to a series of novel redox-active aromatic polyamides. These polyamides exhibited inherent viscosities between 0.31 and 0.44 dL/g, and they were readily soluble in polar organic solvents like NMP and DMAc and could be solution-cast into amorphous and flexible films. The polyamides exhibited good thermal stability with glass-transition temperatures in the range of 218-253 oC, 10% weight-loss temperatures in excess of 500 oC and char yields at 800 oC in nitrogen higher than 65%. Cyclic voltammograms of the polyamide films cast onto an indium-tin oxide (ITO)-coated glass substrate exhibited two reversible oxidation redox couples at 0.80~0.82 V and 0.96~0.98 V versus Ag/AgCl in acetonitrile solution. The polyamide films revealed excellent electrochemical and electrochromic stability, with a color change from a colorless or pale yellowish neutral form to green and purple oxidized forms at applied potentials ranging from 0 to 1.2 V. Electrochromic devices using these polymers as active materials were also fabricated, and they showed high coloration efficiency, high redox stability, and fast response time.
The second part describes the synthesis and properties of aromatic polyimides on the basis of the diamine monomer with the O(TPA)2 unit in the first part. These polyimides were prepared from the O(TPA)2 diamine monomer and various aromatic tetracarboxylic dianhydrides via a conventional two-step procedure that included a ring-opening polyaddition to give poly(amic acid)s, followed by chemical or thermal cyclodehydration. Most of the polyimides were readily soluble in many organic solvents and could be solution-cast into tough and amorphous films. The inherent viscosities of the poly(amic acid) precursors were in the range 0.47-0.88 dL/g. The series of polyimides exhibited excellent thermal stability, with glass-transition temperatures in the range of 227-273 oC and 10% weight-loss temperatures in excess of 550 oC. Cyclic voltammetry studies of the polymer films showed that these polyimides are both p and n dopable and have multicolored electrochromic states.


TABLE OF CONTENTS

摘 要 ii
ABSTRACT iv
ACKNOWLEDGEMENTS vi
TABLE OF CONTENTS vii
LIST OF SCHEMES ix
LIST OF TABLES x
LIST OF FIGURES xi

Part I 1
Abstract 2
Chapter 1 INTRODUCTION 3
Chapter 2 EXPERIMENTAL 5
2.1 Materials 5
2.2 Monomer Synthesis 5
2.2.1 4-Methoxytriphenylamine (1) 5
2.2.2 4-Hydroxytriphenylamine (2) 6
2.2.3 4-(4-Nitrophenoxy)triphenylamine (3) 6
2.2.4 4-(4-Aminophenoxy)triphenylamine (4) 7
2.2.5 N,N-Di(4-nitrophenyl)-N'',N''-diphenyl-4,4''-oxydianiline (5) 8
2.2.6 N,N-Di(4-aminophenyl)-N'',N''-diphenyl-4,4''-oxydianiline (6) 9
2.3 Synthesis of Model Compounds 10
2.3.1 4-Phenoxytriphenylamine (M1) 10
2.3.2 4,4’-Dibenzamido-4”-phenoxytriphenylamine (M2) 10
2.3.3 N,N-Di(4-benzamido)-N'',N''-diphenyl-4,4''-oxydianiline (M3) 11
2.4 Polymer Synthesis 11
2.5 Preparation of the Polyamide Films 12
2.6 Fabrication of the Electrochromic Devices 12
2.7 Measurements 13
Chapter 3 RESULTS AND DISCUSSION 14
3.1 Monomer Synthesis 14
3.2 Polymer Synthesis 24
3.3 Polymer Properties 27
3.3.1 Basic Characterization 27
3.3.2 Thermal Properties 28
3.3.3 Electrochemical Properties 30
3.3.4 Spectroelectrochemistry and Electrochromic Switching 37
Chapter 4 CONCLUSION 46
REFERENCES 47


Part II 52
Abstract 53
Chapter 1 INTRODUCTION 54
Chapter 2 EXPERIMENTAL 55
2.1 Materials 55
2.2 Polymer Synthesis 55
2.3 Measurements 56
Chapter 3 RESULTS AND DISCUSSION 58
3.1 Polymer Synthesis 58
3.2 Polymer Properties 61
3.2.1 Basic Characterization 61
3.2.2 Thermal Properties 64
3.2.3 Electrochemical Properties 66
3.2.4 Spectroelectrochemistry and Electrochromic Switching 71
Chapter 4 CONCLUSION 78
REFERENCES 79



LIST OF SCHEMES
PART I
Scheme 1. Synthetic route to the target diamine monomer 6: (a) 4-iodoanisole, Cu, K2CO3, TEGDME, 180 oC; (b) BBr3, CHCl3, rt, then MeOH; (c) p-fluoronitrobenzene, CsF, DMSO, 140 oC; (d) Pd/C, hydrazine, EtOH, reflux; (e) p-fluoronitrobenzene, CsF, DMSO, 140 oC; (f) Pd/C, hydrazine, EtOH, reflux. 16
Scheme 2. Synthesis of model compound M1-M3 22
Scheme 3. Synthesis of polyamides 8a-8d. 25
Scheme 4. Anodic oxidation pathways of polyamides (a) 8a and (b) 8’a 35

PART II
Scheme 1. Synthesis of polyimides 10a-10f by two-step method. 59
Scheme 2. Postulated reduction chemistry of various diimide systems. 70
Scheme 3. Coupling reaction of the radical cation of TPA units and the subsequent oxidation reactions of thetetraphenylbenzidine segment. 74














LIST OF TABLES

PART I
Table 1. Inherent viscosity and solubility behavior of polyamides 28
Table 2. Thermal properties of the polyamides 29
Table 3. Redox potentials and energy levels of polyamides 33
Table 4. Electrochemical properties of model compounds M1, M2 and M3 34
Table 5. Electrochromic properties of polyamide 8d and its device 43

PART II
Table 1. Inherent viscosity and solubility behavior of polyimides prepared via thermal (-T) or chemical (-C) imidization 62
Table 2. Thermal properties of the polyimides 65
Table 3. Redox potentials and energy levels of polyimides 69
Table 4. Electrochromic properties of polyimide 10b 77















LIST OF FIGURES

PART I
Figure 1. IR spectra of all the synthesized compounds 1-6. 17
Figure 2. (a) 1H NMR (b) 13C NMR (c) H-H COSY and (d) C-H HMQC spectra of nitro compound 3 in DMSO-d6. 18
Figure 3. (a) 1H NMR (b) 13C NMR (c) H-H COSY and (d) C-H HMQC spectra of amino compound 4 in DMSO-d6 19
Figure 4. (a) 1H NMR (b) 13C NMR (c) H-H COSY and (d) C-H HMQC spectra of diamine monomer 5 in DMSO-d6 20
Figure 5. (a) 1H NMR (b) 13C NMR (c) H-H COSY and (d) C-H HMQC spectra of diamine monomer 6 in DMSO-d6 21
Figure 6. IR spectra of model compounds M1-M3 23
Figure 7. Typical IR spectrum of polyamide 8a. 25
Figure 8. (a) 1H NMR spectrum and (b) aromatic portion of the 1H-1H COSY spectrum of polyamide 8a in DMSO-d6. 26
Figure 9. WAXD patterns of the polyamide films. 27
Figure 10. TGA curves of polyamide 8d with a heating rate of 20 oC/min. 29
Figure 11. DSC curves of polyamides 8a-8d with a heating rate of 20 oC/min. 30
Figure 12. (a) Cyclic voltammograms and (b) differential pulse voltammograms of the cast films of polyamides 8a-8d on the ITO-coated glass slide in 0.1 M Bu4NClO4/CH3CN at scan rate of 50 mV/s. 32
Figure 13. Cyclic voltammetric diagrams of model compounds M1, M2 and M3 (10-3 M) in 0.1 M Bu4NClO4/CH3CN solution at a scan rate of 50 mV/s. 34
Figure 14. Cyclic voltammograms of the cast films of polyamides (a) 8a and (b) 8’a on the ITO-coated glass slide in 0.1 M Bu4NClO4/CH3CN at scan rate of 50 mV/s. 36
Figure 15. Spectroelectrochemistry of the polyamide 8d thin film on the ITO-coated glass substrate in 0.1 M Bu4NClO4/CH3CN at (a) 0.8 V, (b) 1.0 V, and (c) 1.2 V. The photos (d) show the transmittance change (△ T %) of the film on an ITO electrode at indicated potentials. ……………………………………………….40
Figure 16. Spectroelectrochemistry of the polyamides (a) 8a and (b) 8’a thin film on the ITO-coated glass substrate in 0.1 M Bu4NClO4/CH3CN 41
Figure 17. Potential step absorptometry of the cast film of polyamide 8d on the ITO-glass slide (coated area: 1 cm2)(in CH3CN with 0.1 M Bu4NClO4 as the supporting electrolyte) by applying a potential step (a)0.0 V 0.8 V (b) 0.0 V 1.2 V and cycle time 16 s. Optical switching for polyamide 8d at (c) λmax = 790 nm as the applied voltage was stepped between 0 and 0.8 V (vs. Ag/Ag/Cl) (d) λmax = 558 nm as the applied voltage was stepped between 0 and 1.2 V (vs. Ag/Ag/Cl). 42
Figure 18. (a) Cyclic voltammograms of the cast films of the electrochromic devices based on polyamide 8d (b) Schematic illustration of the structure of the electrochromic cell (c) Photos of sandwich-type ITO-coated glass electrochromic cell, (d) Spectroelectrochemistry of the device, using polyamide 8d as active layer. 44
Figure 19. Potential step absorptometry of the cast film of device 8d on the ITO-glass slide (in CH3CN with 0.1 M Bu4NClO4 as the supporting electrolyte) by applying a potential step (a)0.0 V 2.2 V (b) 0.0 V 2.6 V and cycle time 16 s. Optical switching for device 8d at (c) λmax = 800 nm as the applied voltage was stepped between 0 and 2.2 V (vs. Ag/Ag/Cl) (d) λmax = 558 nm as the applied voltage was stepped between 0 and 2.6 V (vs. Ag/Ag/Cl). 45


PART II
Figure 1. IR spectra of polyimide 10b and its poly(amic acid) precursor. 60
Figure 2. WAXD patterns of the polyimide films. 63
Figure 3. TMA and TGA curves of polyimide 10a with a heating rate 10 oC/min and 20 oC/min, respectively 65
Figure 4. DSC curves of polyimides 10a-10f with a heating rate of 20 oC/min. 66
Figure 5. Cyclic voltammetric diagrams of the cast tilms of polyimides (a) 10a, (b) 10b, (c) 10c, (d) 10d, (e) 10e, and (f) 10f, on an ITO-coated glass substrate in 0.1 M Bu4NClO4 acetonitrile (for anodic process) and DMF (for cathodic process) solution at a scan rate of 50 and 100 mV/s, respectively. 68
Figure 6. Spectroelectrochemistry of the polyimide 10b thin film on the ITO-coated glass substrate in 0.1 M Bu4NClO4/CH3CN at (a) 1.1 V, (b) 1.2 V, and (c) 0.8 V. (d) the CV diagram for first and second scan. (e) spectroelectrochemistry of the polyimide 10b thin film for the second scan. 73
Figure 7. Spectroelectrochemistry of the polyimides (a) 10a and (b) 10b thin film on the ITO-coated glass substrate in 0.1 M Bu4NClO4/DMF at various applied voltage potentials. 75
Figure 8. Potential step absorptometry of the cast film of polyimide 10b on the ITO-glass slide (coated area: 1 cm2)(in CH3CN with 0.1 M Bu4NClO4 as the supporting electrolyte) by applying a potential step (a) 0.0 V 1.1 V and cycle time 16 s. Optical switching for polyimide 10b at (b) λmax = 760 nm as the applied voltage was stepped between 0 and 1.1 V (vs. Ag/Ag/Cl). 76



Part I
REFERENCES

1Monk, P. M. S.; Mortimer, R. J.; Rosseinsky, D. R. Electrochromism and Electrochromic Devices, Cambridge University Press, Cambridge, UK, 2007.
2(a) Rauch, R. D. Electrochromic windows: an overview. Electrochim. Acta 1999, 44, 3165-3176; (b) Michaelis, A.; Berneth, H.; Haarer, D.; Kostromine, S.; Neigl, R.; Schmidt, R. Electrochromic dye system for smart window applications. Adv. Mater. 2001, 13, 1825-1828; (c) Heuer, H. W.; Wehrmann R.; Kirchmeyer, S. Electrochromic window based on conducting poly(3,4-ethylenedioxythiophene)- poly(styrene sulfonate). Adv. Funct. Mater. 2002, 12, 89-94; (d) Niklasson, G. A.; Granqvist, C.-G. Electrochromics for smart windows: thin films of tungsten oxide and nickel oxide, and devices based on these. J. Mater. Chem. 2007, 17, 127-156; (e) Baetens, R.; Jelle, B. P.; Gustavsen, A. Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: a stste-of-the-art review. Sol. Energy Mater. Sol. Cells 2010, 94, 87-105.
3(a) Rosseinsky, D. R.; Mortimer, R. J. Electrochromic systems and the prospects for devices. Adv. Mater. 2001, 13, 783-793; (b) Sonmez, G.; Wudl, F. Completion of the three primary colours: the final step toward plastic displays. J. Mater. Chem. 2005, 15, 20-22; (c) Mortimer, R. J.; Dyer, A. L.; Reynolds, J. R. Electrochromic organic and polymeric materials for display applications. Displays 2006, 27, 2-18; (d) Andersson, P.; Forchheimer, R.; Tehrani, P.; Berggren, M. Printable all-organic electrochromic active-matrix displays. Adv. Funct. Mater. 2007, 17, 3074-3082.
4Sonmez, G.; Sonmez, H. B. Polymeric electrochromics for data storage. J. Mater. Chem. 2006, 16, 2473-2477.
5(a) Bach, U.; Corr, D.; Lupo, D.; Pichot, F.; Ryan, M. Nanomaterials-based electrochromics for paper-quality displays. Adv. Mater. 2002, 14, 845-848; (b) Kobayashi, N.; Miur, S.; Nishimura, M.; Urano, H. Organic electrochromism for a new color electronic paper. Sol. Energy Mater. Sol. Cells 2008, 92, 136-139; (c) Tehrani, P.; Hennerdal, L.-O.; Dyer, A. L.; Reynolds, J. R.; Berggren, M. Improving the contrast of all-printed electrochromic polymer on paper displays. J. Mater. Chem. 2009, 19, 1799-1802.
6Beaupre, S.; Breton, A.-C.; Dumas, J.; Leclerc, M. Multicolored electrochromic cells based on poly(2,7-carbazole) derivatives for adaptive camouflage. Chem. Mater. 2009, 21, 1504-1513.
7(a) Smith, D. W. C. Transition metal oxide electrochromic materials and displays: a review: Part 1: oxide with anodic coloration. Displays 1982, 3, 3-32; (b) Smith, D. W. C. Transition metal oxide electrochromic materials and displays: a review: Part 2: oxide with anodic coloration. Displays 1982, 3, 67-80; (c) Mortimer, R. J. Electrochromic materials. Chem. Soc. Rev. 1997, 26, 147-156; (d) Mortimer, R. J. Organic electrochromic materials. Electrochim. Acta 1999, 44, 2971-2981; (e) Somani, P. S.; Radhakrishnan, S. Electrochromic materials and devices: present and future. Mater. Chem. Phys. 2002, 77, 117-133.
8(a) Sonmez, G. Polymeric electrochromics. Chem. Commun. 2005, 5251-5259; (b) Patra, A.; Bendikov, M. Polyselenophenes. J. Mater. Chem. 2010, 20, 422-433; (c) Beaujuge, P. M.; Reynolds, J. R. Color control in π-conjugated organic polymers for use in electrochromic devices. Chem. Rev. 2010, 110, 268-320.
9(a) Balan, A.; Baran, D.; Gunbas, G.; Durmus, A.; Ozyurt, F.; Toppare, L.One polymer for all: benzotriazole containing donor-acceptor type polymer as a multi-purpose material. Chem. Commun. 2009, 6768-6770; (b) Invernale, M. A.; Ding, Y.; Mamangun, D. M. D.; Yavus, M. S.; Sotzing, G. A. Preparation of conjugated polymers inside assembled solid-state devices. Adv. Mater. 2010, 22, 1379-1382; (c) Icli, M.; Pamuk, M.; Algi, F.; Onal, A. M.; Cihaner, A. Donor-acceptor polymer electrochromes with tunable colors and performance. Chem. Mater. 2010, 22, 4034-4044; (d) Koyuncu, S.; Usluer, O.; Can, M.; Demic, S.; Icli, S.; Serdar, N. Electrochromic and electroluminescent devices based on a novel branched quasi-dendric fluorine-carbazole-2,5-bis(2-thienyl)-1H-pyrrole system. J. Mater. Chem. 2011, 21, 2684-2693; (e) Dey, T.; Invernale, M.; Ding, Y.; Buyukmumcu, Z.; Sotzing, G. A. Poly(3,4-propylenedioxythiophene)s as a single platform for full color realization. Macromolecules 2011, 44, 2415-2417; (f) Icli, M.; Oztas, Z.; Algi, F.; Cihaner, A. A neutral state yellow to navy polymer electrochrome with pyrene scaffold. Org. Electron. 2011, 12, 1505-1511.
10(a) Thelallat, M. Star-shaped, dendrimeric and polymeric triarylamines as photoconductors and hole transport materials for electro-optical applications. Macromol. Mater. Eng. 2002, 287, 442-461. (b) Shirota, Y.; Kageyama, H. Charge carrier transporting molecular materials and their applications in devices. Chem. Rev. 2007, 107, 953-1010.
11(a) Chou, M.-Y.; Leung, M.-k.; Su, Y. O.; Chiang, C. L.; Lin, C.-C.; Liu, J.-H.; Kuo, C.-K.; Mou, C.-Y. Electropolymerization of starburst triarylamines and their application to electrochromism and electroluminescence. Chem. Mater. 2004, 16, 654-661; (b) Beaupre, S.; Dumas, J.; Leclerc, M. Toward the development of new textile/plastic electrochromic cells using triphenylamine-based copolymers. Chem. Mater. 2006, 18, 4011-4018; (c) Natera, J.; Otero, L.; D’Eramo, F.; Sereno, L.; Fungo, F.; Wang, N.-S.; Tsai, Y.-M.; Wong, K.-T. Synthesis and properties of a novel cross-linked electroactive polymer formed from a bipolar starburst monomer. Macromolecules 2009, 42, 626-635.
12(a) Cheng, S.-H.; Hsiao, S.-H.; Su, T.-H.; Liou, G.-S. Novel aromatic poly(amine-imide)s bearing a pendent triphenylamine group: synthesis, thermal, photophysical, electrochemical, and electrochromic characteristics. Macromolecules 2005, 38, 307-316; (b) Hsiao, S.-H.; Chang, Y.-M.; Chen, H.-W.; Liou, G.-S. Novel aromatic polyamides and polyimides functionalized with 4-tert-butyltriphenylamine groups. J. Polym. Sci., Part A: Polym. Chem. 2006, 44, 4579-4592; (c) Chang, C.-W.; Liou, G.-S.; Hsiao, S.-H. Highly stable anodic green electrochromic aromatic polyamides: synthesis and electrochromic properties. J. Mater. Chem. 2007, 17, 1007-1015; (d) Hsiao, S.-H.; Liou, G.-S.; Kung, Y.-C.; Yen, H.-J. High contrast ratio and rapid switching electrochromic polymeric films based on 4-(dimethylamino)triphenylamine-functionalized aromatic polyamides. Macromolecules 2008, 41, 2800-2808; (e) Kung, Y.-C.; Liou, G.-S.; Hsiao, S.-H. Synthesis and characterization of novel electroactive polyamides and polyimides with bulky 4-(1-adamantoxy)triphenylamine moieties. J. Polym. Sci. Part A: Polym. Chem. 2009, 47, 1740-1755; (f) Wang, H.-M.; Hsiao, S.-H.; Liou, G.-S.; Sun, C.-H. Synthesis, photoluminescene, and electrochromism of polyamides containing (3,6-di-tert-butylcarbazol-9-yl)triphenylamine units, J. Polym. Sci. Part A: Polym. Chem. 2010, 48, 4775-4789; (g) Kung, Y.-C; Hsiao, S.-H. Fluorescent and electrochromic polyamides with pyrenylamine chromophores. J. Mater. Chem. 2010, 20, 5481-5492; (h) Kung, Y.-C.; Hsiao, S.-H. Solution-processable, high-Tg, ambipolar polyimide electrochromics bearing pyrenylamine units. J. Mater. Chem. 2011, 21, 1746-1754; (i) Wang, H.-M.; Hsiao, S.-H. Enhanced redox stability and electrochromic properties of aromatic polyamides based on N,N-bis(4-carboxyphenyl)-N’,N’-bis(4-tert-butylphenyl)-1,4-phenylenediamine. J. Polym. Sci. Part A: Polym. Chem. 2011, 49, 337-351; (j) Yen, H.-J.; Lin, H.-Y.; Liou, G.-S. Novel starburst triarylamine-containing electroactive aramids with highly stable electrochroism in near-infrared and visible light regions. Chem. Mater. 2011, 23, 1874-1882; (k) Yen, H.-J.; Lin, K.-Y.; Liou, G.-S. Transmissive to black electrochromic aramids with high near-infrared and multicolor electrochromism based on electroactive tetraphenylbenzidine units. J. Mater. Chem. 2011, 21, 6230-6237.
13(a) Liou, G.-S.; Chang, C.-W. Highly stable anodic electrochromic aromatic polyamides containing N,N,N’,N’-tetraphenyl-p-phenylenediamine moieties: synthesis, electrochemical, and electrochromic properties. Macromolecules 2008, 41, 1667-1674; (b) Chang, C.-W.; Chung, C.-H.; Liou, G.-S. Novel anodic polyelectrochromic aromatic polyamides containing pendent dimethyl- triphenylamine moieties. Macromolecules 2008, 41, 8441-8451; (c) Chang, C.-W.; Liou, G.-S. Novel anodic electrochromic aromatic polyamides with multi-stage oxidative coloring based on N,N,N’,N’-tetraphenyl-p-phenylenediamine derivatives. J. Mater. Chem. 2008, 18, 5638-5646; (d) Yen, H.-J.; Liou, G.-S. Solution-processable novel near-infrared electrochromic aramatic polyamides based on electroactive tetraphenyl-p-phenylenediamine moieties. Chem. Mater. 2009, 21, 4062-4070; (e) Hsiao, S.-H.; Liou, G.-S.; Wang, H.-M. Highly stable electrochromic polyamides based on N,N-bis(4-aminophenyl)-N’,N’-bis(4-tert-butylphenyl)-1,4- phenylenediamine. J. Polym. Sci., Part A: Polym. Chem. 2009, 47, 2330-2343.
14(a) Lambert, C.; Noll, G. One- and two-dimensional electron transfer processes in triarylamines with multiple redox centers. Angew. Chem. Int. Ed. 1998, 37, 2107-2110; (b) Lambert, C.; Noll, G. The class II/III transition in triarylamine redox systems. J. Am. Chem. Soc. 1999, 121, 8434-8442; (c) Lambert, C.; Noll, G. Intervalence charge-transfer bands in triphenylamine-based polymers. Synth. Met. 2003, 139, 57-62.
15Yen, H.-J.; Guo, S.-M.; Liou, G.-S.; Chung, J.-C.; Liu, Y.-C.; Lu, Y.-F.; Zeng, Y.-Z. Mixed-valence class I transition and electrochemistry of bis(triphenylamine)-based aramids containing isolated ether-linkage. J. Polym. Sci., Part A: Polym. Chem. 2011, 49, 3805-3816.
16(a) Faccini, M.; Balakrishnan, M.; Diemeer, M. B. J.; Torosantucci, R.; Driessen, A.; Reinhoudt, D. N.; Verboom, W. Photostable nonlinear optical polycarbonates. J. Mater. Chem. 2008, 18, 5293-5300; (b) Liu, Y.-H.; Chen, C.; Yang, L.-M. Diazabutadiene: a simple and efficient ligand for copper-catalyzed N-arylation of aromatic amines. Tetrahedron Lett. 2006, 47, 9275–9278.
17Yamazaki, N.; Matsumoto, M.; Higashi, F. Studies on reactions of the N-phosphonium salts of pyridines. XIV. Wholly aromatic polyamides by the direct polycondensation reaction by using phosphites in the presence of metal salts. J. Polym. Sci. Polym. Chem. Ed. 1975, 13, 1373-1380.

Part II
REFERENCES

1.(a) Polyimides; Wilson, D.; Stenzenberger, H. D.; Hergenrother, P. M., Eds.; Blackie: Glasgow and London, 1990; (b) Sroog, C. E. Polyimides. Prog. Polym. Sci. 1991, 16, 561-694; (c) Polyimides: Fundamentals and Applications; Ghosh, M. K.; Mittal, K. L. Eds.; Marcel Dekker: New York, 1996.
2.(a) Huang, S. J.; Hoyt, A. E. The synthesis of soluble polyimides. Trends Polym. Sci. 1995, 3, 262-271; (b) de Abajo, J.; de la Campa, J. G. Processable aromatic polyimides. Adv. Polym. Sci. 1999, 140, 23-59; (c) Ding, M. Isomeric polyimides. Prog. Polym. Sci. 2007, 32, 623-668; (d) Dhara, M. G.; Banerjee, S. Fluorinated high-performance polymers: Poly(arylene ether)s and aromatic polyimides containing trifluoromethyl groups. Prog. Polym. Sci. 2010, 35, 1022-1077.
3.(a) Eastmond, G. C.; Gibas, M.; Paprotny J. Pendant adamantly poly(ether imide)s: synthesis and a preliminary study of properties. Eur. Polym. J. 1999, 35, 2097-2106; (b) Ayala, D.; Lozano, A. E.; de Abajo, J.; de la Campa, J. G. Synthesis and characterization of novel polyimides with bulky pendant groups. J. Polym. Sci. Part A: Polym. Chem. 1999, 37, 805-814; (c) Reddy, D.S.; Chou, C.-H.; Shu, C.-F.; Lee, G.-H. Synthesis and characterization of soluble poly(ether imide)s based on 2,2’-bis(4-aminophenoxy)-9,9’-spirobifluorene. Polymer 2003, 44, 557-563; (d) Yin, D.-X.; Li, Y.-F.; Yang, H.-X.; Yang, S.-Y.; Fan, L.; Liu J.-G. Synthesis and characterization of novel polyimides derived from 1,1-bis[4-(4’-aminophenoxy)- phenyl]-1-[3”,5”-bis(trifluoromethyl)phenyl]-2,2,2-trifluoroethane Polymer 2005, 46, 3119-3127; (e) Lin, C.-H.; Lin, C.-H. Synthesis and properties of polyimides derived from 1,4-bis(4-aminophenoxy)-2-(6-oxido-6H-dibenz[c,e][1,2]oxa- phosphorin-6-yl)phenylene. J. Polym. Sci. Part A: Polym. Chem. 2007, 45, 2897-2912; (f) Zhang, Q.-Y.; Chen, G.; Zhang, S.-B. Synthesis and properties of novel soluble polyimides having a spirobisindane-linked dianhydride unit. Polymer 2007, 48, 2250-2256; (g) Zhang, Q.; Li, S.-H.; Li, W.-M.; Zhang, S.-B. Synthesis and properties of novel organosoluble polyimides derived from 1,4-bis(3,4-dicarboxyphenoxy)triptycene dianhydride and various aromatic diamines. Polymer 2007, 48, 6246-6253; (h) Chern, Y.-T.; Tsai, J.-Y. Low dielectric constant and high organosolubility of novel polyimides derived from unsymmetric 1,4-bis(4-aminophenoxy)-2,6-di-tert-butylbenzene. Macromolecules 2008, 41, 9556-9564; (i) Chern, Y.-T.; Tsai, J.-Y.; Wang, J.-J. High Tg and high organosolubility of novel unsymmetrical polyimides. J. Polym. Sci. Part A: Polym. Chem. 2009, 47, 2443-2452; (j) Lin, C.-H.; Chang, S.-L.; Peng, L.-A.; Peng, S.-P.; Chung, Y.-H. Organo-soluble phosphinated polyimides from asymmetric diamines. Polymer 2010, 51, 3899-3906; (k) Lin, C.-H.; Chang, S.-L.; Cheng, P.-W. Soluble high-Tg polyetherimides with good flame retardancy based on an asymmetric phosphinated etherdiamine. J. Polym. Sci. Part A: Polym. Chem. 2011, 49, 1331-1340.
4.(a) Liou, G.-S.; Hsiao, S.-H.; Ishida, M.; Kakimoto, M.; Imai, Y. Synthesis and properties of new aromatic poly(amine-imide)s derived from N,N’-bis(4-amino- phenyl)-N,N’-diphenyl-1,4-phenylenediamine. J. Polym. Sci. Part A: Polym. Chem. 2002, 40, 3815-3822; (b) Liaw, D.-J.; Hsu, P.-N.; Chen, W.-H.; Lin, S.-L. High glass transitions of new polyamides, polyimides, and poly(amide-imide)s containing a triphenylamine group: Synthesis and characterization. Macromolecules 2002, 35, 4669-4676; (c) Hsiao, S.-H.; Chang, Y.-M.; Chen, H.-W., Liou, G.-S. Novel aromatic polyamides and polyimides functionalized with 4-tert-butyltriphenylamine groups. J. Polym. Sci. Part A: Polym. Chem. 2006, 44, 4579-4592; (d) Li, W.-M.; Li, S.-H.; Zhang, Q.-Y.; Zhang, S.-B. Synthesis of bis(amine anhydride)s for novel high Tgs and organosoluble poly(amine imide)s by palladium-catalyzed amination of 4-chlorophthalic anhydride. Macromolecules 2007, 40, 8205-8211.
5.(a) Cheng, S.-H.; Hsiao, S.-H.; Su, T.-H.; Liou, G.-S. Novel aromatic poly(amine-imide)s bearing a pendent triphenylamine group: synthesis, thermal, photophysical, electrochemical, and electrochromic characteristics. Macromolecules 2005, 38, 307-316; (b) Liou, G.-S.; Hsiao, S.-H.; Chen, H.-W. Novel high-Tg poly(amide-imide)s bearing pendent N-phenylcarbazole units: synthesis and photophysical, electrochemical and electrochromic properties. J. Mater. Chem. 2006, 16, 1831-1842; (c) Chang, C.-W.; Yen, H.-J.; Huang, K.-Y.; Yeh, J.-M.; Liou, G.-S. Novel organosoluble aromatic polyimides bearing pendant methoxy-substituted triphenylamine moieties: synthesis, electrochromic, and gas separation properties. J. Polym. Sci. Part A: Polym. Chem. 2008, 46, 7937-7949; (d) Kung, Y.-C.; Liou, G.-S.; Hsiao, S.-H. Synthesis and characterization of novel electroactive polyamides and polyimides with bulky 4-(1-adamantoxy)- triphenylamine moieties. J. Polym. Sci. Part A: Polym. Chem. 2009, 47, 1740-1755; (e) Kung, Y.-C.; Hsiao, S.-H. Solution-processable, high-Tg, ambipolar polyimide electrochromics bearing pyrenylamine units. J. Mater. Chem. 2011, 21, 1746-1754; (f) Kung, Y.-C.; Lee, W.-F.; Hsiao, S.-H.; Liou, G.-S. New polyimides incorporated with diphenylpyrenylamine unit as fluorophore and redox-chromophore. J. Polym. Sci. Part A: Polym. Chem. 2011, 49, 2210-2221; (g) .Yen, H.-J.; Guo, S.-M.; Yeh, J.-M.; Liou, G.-S. Triphenylamine-based polyimides with trimethyl substituents for gas separation membrane and electrochromic applications. J. Polym. Sci. Part A: Polym. Chem. 2011, 49, 3637-3646.
6.(a) Ling, Q.-D.; Chang, F.-C.; Song, Y.; Zhu, C.-X.; Liaw, D.-J.; Chan, D. S.-H.; Kang, E.-T.; Neoh, K.-G. Synthesis and dynamic random acess memory behavior of a functional polyimide. J. Am. Chem. Soc. 2006, 128, 8732-8733; (b) Lee, T. J.; Chang, C.-W.; Hahm, S. G.; Kim, K.; Park, S.; Kim, D. M.; Kim, J.; Kwon, W.-S.; Liou, G,-S.; Ree, M. Programmable digital memory devices based on nanoscale thin films of a thermally dimensionally stable polyimide. Nanotechnology 2009, 20, 135204 (7pp); (c) Kuorosawa, T.; Chueh, C.-C.; Liu, C.-L.; Higashihara, T.; Ueda, M.; Chen, W.-C. High performance volatile polymeric memory devices based on novel triphenylamine-based polyimides containing mono- or dual-mediated phenoxy linkages. Macromolecules 2010, 43, 1236-1244; (d) Wang, K.-L.; Liu, Y.-L.; Shih, I-H.; Neoh, K.-G.; Kang, E.-T. Synthesis of polyimides containing triphenylamine-substituted triazole moieties for polymer memory applications. J. Polym. Sci. Part A: Polym. Chem. 2010, 48, 5790-5800.
7.Yen, H.-J.; Guo, S.-M.; Liou, G.-S.; Chung, J.-C.; Liu, Y.-C.; Lu, Y.-F.; Zeng, Y.-Z. Mixed-valence class I transition and electrochemistry of bis(triphenylamine)-based aramids containing isolated ether-linkage. J. Polym. Sci., Part A: Polym. Chem. 2011, 49, 3805-3816.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 側鏈含三苯胺結構之芳香族聚醯胺與聚醯亞胺的合成與電致變色性質之研究
2. 大尺度結構與星系性質之間的關係:大尺度與小尺度環境對於星系的光學性質之研究
3. 主鏈含苯氧基與三苯胺結構及側鏈含咔唑基團之新型芳香族聚醯亞胺的合成與電致變色性質之研究
4. 新型含三蝶烯結構之可溶性、淡色聚醚醯亞胺與聚醚醯胺的合成與性質研究
5. 具芘基胺發色團之高性能聚合物的合成及其光電性質研究
6. 含有三蝶烯結構的聚醯亞胺之合成與性質
7. 側鏈含3,6-雙(甲氧基)咔唑基團之芳香族聚醯胺及聚醯亞胺的合成及其光電性質的研究
8. 含蒽醌結構之聚醚醯亞胺與聚胺酯之合成與性質研究
9. 含三蝶烯結構之聚(醯胺-醯亞胺)及 聚(醯胺-三芳香胺)的合成與性質研究
10. 側鏈含咔唑基團之芳香族聚醯胺與末端具咔唑或三苯胺基團的二醯胺及二醯亞胺所衍生的電聚合薄膜之製備及光電特性研究
11. 新型含芘胺基之聚醯胺醯亞胺及聚硫醚醯亞胺的合成及其光電性質的研究
12. 微乳液的物理化學特性與穩定度之研究
13. 新型含多苯胺結構之芳香族高分子合成與電化學及電致變色特性之研究
14. 主鏈具三苯胺結構及側鏈含脂肪胺基團之聚醯胺與聚醯亞胺的合成與性質探討
15. 側鏈含金剛烷基取代之苯氧基及主鏈具三苯胺結構的新型聚醯亞胺之合成及其性質之研究