[1] A. Fujishima, K. Honda, "Electrochemical Photolysis of Water at a Semiconductor Electrode," Nature, vol. 238, 1972, pp. 37-38.
[2] J. Gautron, P. Lemasson, B. Poumellec, J.F. Marucco, "Photoelectrochemical study of (Ti, V) O2 and (Ti, Nb)O2 alloys, " Solar Energy Materials vol. 9, no. 1, 1983, pp. 101-111.
[3] G. R. Bamwenda, S. Tsubota, T. Nakamura, M. Haruta, "Photoassisted hydrogen production from a water-ethanol solution: a comparison of activities of AuTiO2 and PtTiO2," Journal of Photochemistry and Photobiology A: Chemistry, vol. 89, no. 2, 1995, pp. 177-189.
[4] H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, R.E. Smalley, "C60: Buckminsterfullerene," Nature, vol. 318, 1985, pp. 162-163..
[5] S. Iijima, "Helical microtubules of graphitic carbon," Nature, vol. 354, 1991, pp. 56-58.
[6] R. S. Wanger, W. C. Ellis, "Vapor‐liquid‐solid mechanism of single crystal growth " Applied Physics Letters, vol. 4, no. 89, 1964.
[7] D. Wang , H. Dai, " Germanium nanowires: from synthesis, surface chemistry, and assembly to devices " APPLIED PHYSICS A: MATERIALS SCIENCE & PROCESSING, vol. 85, no. 3, 2006, pp. 217-225.
[8] D. P. Yu, Q. I. Hang, Y. Ding, "Nanoscale silicon wires synthesized using simple physical evaporation " Applied Physics Letters, vol.72, no.26, 1998, pp. 3458.
[9] G. E. Possin, " A Method for Forming Very Small Diameter Wires"Review of Scientific Instruments., vol. 41, no.5, 1970, pp.772.
[10] L. Sun, P. C. Searson, "Electrochemical deposition of nickel nanowire arrays in single-crystal mica films " Applied Physics Letters, vol. 74, 1999, pp. 2803-2805.
[11] T. M. Whitney, J. S. Jiang, P. C. Searson, C. L. Chien, "Fabrication and Magnetic Properties of Arrays of Metallic Nanowires," Science, vol. 261, no. 5126, 1993, pp. 1316-1319.
[12] A. P. Li, F. Muller, A. Birner, K. Nielsch, U. J. Gosele, "Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina "Applied Physics Letters, vol. 84, no.11, 1998, pp. 6023.
[13] H. Li, C. L. Xu, G. Y. Zhao, H. L. Li, "Electrodeposition of ferromagnetic nanowire arrays on AAO/Ti/Si substrate for ultrahigh-density magnetic storage devices," Materials Letters, vol.60, no. 19, 2006, pp.2335-2338.
[14] C. G. Jin, G. W. Jiang, W. F. Liu, W. L. Cai, L. Z. Yao, Z. Yao, X. G. Li, "Fabrication of large-area single crystal bismuth nanowire arrays," Journal of Materials Chemistry, no. 13, 2003, pp.1743-1746.
[15] J. U. Cho, Q. X. Liu, J. H. Min, S. P. Ko, Y. K. Kim, "Effect of external magnetic field on anisotropy ofCo/Cu multilayer nanowires " Journal of Applied Physics Vol.99 no. 8, 2006, pp. 909.
[16] S. K. Thamida, H.C. Chang, "Nanoscale pore formation dynamics during aluminum anodization, " Chaos, vol. 12, no. 1, 2002, pp. 240-251
[17] F. Li, L. Zhang, R. M. Metzger, "On the growth of highly ordered pores in anodizied alumiunm oxide," Chemistry of Materials, vol. 10, no. 9, 1998 pp. 2470-2480.
[18] A. P. Li, F. Muller, A.Birner, K. Nielsch, U. Gosele, "Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anobic," Journal of Applied Physics, vol. 84, no. 11, 1998, pp.6023-6026.
[19] O. Jessensky, F. Muller, U. Gosele, "Self-organized formation of hexagonal pore arrays in anodic alumina," Journal of Applied Physics, vol. 72, no. 10, 1998, pp. 1173-1175.
[20] I. Vrublevsky, V. Parkoum, V. Sokol, J. schreckenbach, G. Marx, "The study of the volume expansion of aluminum during porous oxide formation at galvanostatic regime,"Applied Surface Science, vol. 222, no.1-4, 2004, pp. 215-225.
[21] I. Vrublevsky, V. Parkoum, J. schreckenbach, G. Marx, "Study of porous oxidefilm growth on aluminum in oxalic acid using a re-anodizing technique," Applied Surface Science, vol. 227, no. 1-4, 2004, pp.282-292.
[22] J. Zou, L. Pu, X. Bao, D. Feng, "Branchy alumina nanotubes," Applied Physics Letters, vol. 80, no. 6, 2002, pp.1079-1081.
[23] Y. C. Sui, B. Z. Cui, L. Martinez, R. Perez, and D. J. Sellmyer,"Pore structure, barrier layer topography and matrix alumina structure of porous anodic alumina film," Thin Solid Films, vol. 406,no. 1-2, 2002, pp.64-69.
[24] A. Mozalev, S. Magaino, H. Imai, "The formation of nanoporous membranesfrom anodically oxidized aluminum and their application to Li rechargeable batteries," Electrochemica Acta, vol. 46, no. 18, 2001, pp.2825-2834.
[25] Y. T. Tian, G. W. Meng, T. Gao, S. H. Sun, T. Xie, X. S. Peng, "Alumina nanowire arrays standing on a porous anodic alumina membrane," Nanotechnology, vol. 15, no. 1, 2004, pp.189-191.
[26] J. Newby, K. Mills, ASM Metals Handbook,Metallography and microstructures, ASM International, 1985, pp. 48.
[27] P. A. Jacquet, "Electrolytic polishing of metallic surface," Metallurgical Reviews, vol. 1, 1956, pp. 157-238.
[28] P. V. Schigolev, Electrolytic and chemical polishing of metal, Tel Aviv, Israel , Freund Publishing House, 1970.
[29] A. I. Vorobyova, V. A. Sokil, E. A. Outkina, "SEM investigation of pillared microstructures formed by electrochemical anodization," APPLIED PHYSICS A: MATERIALS SCIENCE & PROCESSING, vol. 67, no. 4, 1998, pp.487-492.
[30] A. I. Vorobyova, E. A. Outkina,"Study of pillar microstructure formation with anodic oxides," Thin Solid Films, vol. 324, no.1, 1998, pp.1-10.
[31] 陳柏林,奈米碳管與氧化鈦奈米點之陽極氧化鋁模板輔助成長與電子場效發射,博士論文,國立交通大學材料科學與工程學系,新竹,2005。[32] P. Gu, J. H. Zhao, G. H. Li, M. Gong, "Highly ordered carbon nanotube arrays with open ends grown in anodic alumina nanoholes," JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY MATERIALS SCIENCE EDITION, vol. 18, no. 1, 2003, pp. 7-8.
[33] S. K. Hwang, J. H. Lee, S. H. Jeong, P. S. Lee, K. H. Lee, "Fabrication of carbon nanotube emitters in an anodic aluminium oxide nanotemplate on a Si wafer by multi-step anodization," Nanotechnology, vol. 16, no.6, 2005, pp.850-858.
[34] T. Qiu, X. L. Wu, G. S. Huang, G. G. Siu, Y. F. Mei, F. Kong, M. Jiang, "Individual alumina nanotubes coaxially wrapping carbon nanotubes and nanowires," Thin Solid Films, vol. 478, no. 1-2, 2005, pp. 56-60.
[35] Y. Yang, H. Chen, Y. F. Mei, J. B. Chen, X. L. Wu, X. Bao, "Anodic alumina template on Au/Si substrate and preparation of CdS nanowires," Solid State Communications, vol. 123, no.6-7, 2002, pp.279-282.
[36] D. Routkevitch, A. A. Tager, J. Haruyama, D. Almawlawi, M. Moskovits, J. M. Xu, "Nonlithographic nano-wire arrays: Fabrication, Physics, and device applications," IEEE Transactions on Electron Devices, vol. 43, no.10, 1996, pp.1646-1658.
[37] R. K. Nahar, "Study of the performance degradation of thin film aluminum oxide sensor at high humidity," Sensors and Actuators, B: Chemical, vol. 63, no. 1-2, 2000, pp.49-54.
[38] R. K. Nahar, V. K. Khanna, "Ionic doping and inversion of the characteristic of thin film porous Al2O3 humidity sensor," Sensors and Actuators, B: Chemical, vol. 46, no. 1, 1998, pp.35-41.
[39] G. Sberveglieri, R. Anchisini, R. Murri, C. Ercoli, N. Pinto, "Al2O3 sensor for low humidity content: characterization by impedance spectroscopy," Sensors and Actuators, B: Chemical, vol. 32, no. 1, 1996, pp. 1-5.
[40] W. G. Yelton, K. B. Pfeifer, A. W. Staton, "Porous Al2O3 nanogeometry sensor films: Growth and analysis," Journal of the Electrochemical Society, vol. 149, no. 1, 2002, pp.1-5.
[41] F. J. Morin, "Oxides Which Show a Metal-to-Insulator Transition at the Neel Temperature," Physical Review Letters, vol. 3, no. 1, 1959, pp. 34-36.
[42] W. Rstoker, The Metallurgy of Vanadium, New York, John Wiley & Sons, 1958.
[43] H. B. Scaches, Semiconducting Temperature Sensors and their Applications, New York: John Wiley & Sons, 1975.
[44] B. F. Briffing, S. P. Faile, J. M. Honig, "Evidence for one-dimensional spin order in V3O5," Physical. Review B, vol. 21, no. 1, 1980, pp. 154-158.
[45] R.J.H. Clark, The Chemistry of Titanium and Vanadium, Amsterdam, Elsevier, 1968.
[46] R. J. Keyes, Optical and Infrared Detectors, Thermal Detectors, New York Springer-Verlag, 1997.
[47] S.M. Babulanam, T.S. Eriksson, G.A. Niklasson, C.G. Granqvist, "hermochromic VO2 films for energy-efficient windows," Solar Energy Materials, vol. 16, no. 5, 1987, pp. 347-363.
[48] M. Soltani, M. Chaker, E. Haddad, R.V. Kruzelecky, D. Nikanpour, "Optical switching of vanadium dioxide thin films deposited by reactive pulsed laser deposition " Journal of Vacuum Science & Technology A, vol. 22, no. 3, 2004, pp. 859-864.
[49] A. Cavalleri, C. Toth, C.W. Siders, J.A. Squier, F. Raksi, P. Forget, J.C. Kieffer, "Femtosecond structural dynamics in VO2 during a solid-to-solid phase transition," Physical Review Letters, vol. 87, no.23, 2001, pp. 237-241.
[50] D. Xiao, K.W. Kim, J.M. Zavada, "Electrically Programmable Photonic Crystal Slab Based on the Metal-Insulator Transition in VO2," Journal of Applied Physics , vol. 97, no. 10, 2005, pp.106-108.
[51] C. Chen, X. Yi, X. Zhao, and B. Xiong, Sens. "Characterizations of VO2-based uncooled microbolometer linear array," Sensors and Actuators A: Physical, vol.90, no. 3, 2001, pp. 212-214.
[52] D. Zintu, G. Tosone, and A. Mercuri, "Dual ion beam sputtering vanadium dioxide microbolometers by surface micromachining," Infrared Physics & Technology, vol. 43, no, 3-5, 2002, pp. 245-250.
[53] S. Minomora and H. Nagasaki, "The effect of pressure on the metal-to-insulator transition in V2O4 and V2O3," Journal of the Physical Society of Japan, vol. 19, no. 1, 1964, pp. 131.
[54] C. N. Berglund, H. J. Guggenheim, "Electronic Properties of VO2 near the Semiconductor-Metal Transition," Physical Review online Archive, vol. 185,no. 3, 1969, pp. 1022-1033.
[55] C. N. Berglund, A. Jayaroman, "Hydrostatic-Pressure Dependence of the Electronic Properties of VO2 Near the Semiconductor-Metal Transition Temperature," Physical Review online Archive, vol. 185, no. 3, 1969, pp. 1034-1039.
[56] J. F. De Natale, P. J. Hood, A. B. Harker, "Formation and characterization of grain‐oriented VO2 thin films," Journal of Applied Physics, vol. 66, no. 12, 1989, pp. 5844-5850.
[57] B. Goodenough, "The two components of the crystallographic transition in VO2," Journal of Applied Physics, vol. 3, no. 4, 1971, pp. 490-500.
[58] W. R. Roach, "Holographic Storage in VO2," Applied Physics Letters, vol. 19, 1971, pp. 453-455.
[59] W. Haidinger, D. Gross, "Anomalous hysteresis shape of thin VO2 layers," Thin Solid Film, vol. 12, no. 2, 1972, pp. 433-438.
[60] G. V. Jorgensen, J. C. Lee, "Doped vanadium oxide for optical switching films," Solar Energy Mater, vol. 14, no. 3-5, 1986, pp. 205-214.
[61] J. Livage, G. Guzman, F. Beteille and P. Davidson, " Optical properties of sol–gel derived vanadium oxide lms," JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, vol. 8, no.1-3, 1997, pp. 857-865.
[62] A. W. Smith, "Optical storage in VO2 films," Applied Physics Letters, vol. 23, no. 8, 1973, pp. 437-438.
[63] D. D. Eden, "VANADIUM DIOXIDE STORAGE MATERIAL," Optical engineering : the journal of the Society of Photo-optical Instrumentation Engineers, vol. 20, no. 3, 1981, pp. 377-378.
[64] M. Fukuma, S. Zembutsu, S. Miyazawa, "Preparation of VO2 thin film and its direct optical bit recording characteristics," Applied Optics, vol. 22, no. 2. 1983, pp. 265-268.
[65] T. Ohno, F. Tanigawa, K. Fujihara, S. Izumi, M. Matsumura," Photocatalytic oxidation of water by visible light using ruthenium-doped titanium dioxide powder," Journal of Photochemistry and Photobiology A: Chemistry, vol. 127, no. 1-3, 1999, pp. 107-110.
[66] Xingjina Yi, Changhong Chen, Luqin Liu, Yingrui Wang, Bifeng Xiong, Hongchen Wang, Sihai Chen,"A new fabrication method for vanadium dioxide thin films deposited by ion beam sputtering," Infrared Physics & Technology, vol. 44, no. 2, 2003, pp. 137-141.
[67] Changhong Chen, Xingjina Yi, Jing Zhang, Xingrong Zhao, "Linear uncooled microbolometer array based on VOx thin films," Infrared Physics & Technology, vol. 42, no. 2, 2001, pp. 87-90.
[68] Changhong Chen, Xingjina Yi, Xingrong Zhao, Bifeng Xiong, " Preparation and properties of vanadium dioxide thin films for uncooled microbolometer, " Infrared and Millimeter Waves, Beijing , China., 2000, pp.145-146.
[69] Changhong Chen, Xingjina Yi, Xingrong Zhao, Bifeng Xiong, "Characterizations of VO2 -based uncooled microbolometer linear array," Sensors and Actuators A: Physical, vol. 90, no. 3, 2001, pp. 212-214 ,(2001)
[70] V. Yu. Zerov, Yu. V. Kulikov, V. G. Malyarov, I. A. Khrebtov, I. I. Shaganov, E. B. Shadrin, "Vanadium oxide films with improved characteristics for ir microbolometric matrices," Technical Physics Letters, vol. 27 no. 5, 2001, pp. 378-380.
[71] D. Zintu, G. Tosone, A. Mercuri, "Dual ion beam sputtering vanadium dioxide microbolometers by surface micromachining," Infrared Physics & Technology, vol. 43, no.3-5, 2002, pp. 245-250.
[72] M. B. Sahana, M. S. Dharmaprakash, S. A. Shivashankar, "Microstructure and properties of VO2 thin films deposited by MOCVD from vanadyl acetylacetonate," Journal of Materials Chemistry, vol. 12, no. 2, 2002, pp. 333-338.
[73] R. T. Rajendra, B. Karunagaran, D. Mangalaraj, Sa. K. Narayandass, P. Manoravi, M. Joaeph, Vishnu Gopal, R. K. Madaria, J. P. Singh," Room temperature deposited vanadium oxide thin films for uncooled infrared detectors,"Materials Research Bulletin, vol. 38, no. 7, 2003, pp. 1235-1240.
[74] A. Rogalski, Infrared detector, Gordon and Breach Science Publishers, Amsterdam, 2000.
[75] R. A. Wood, Infrared Detector and Emitters: Materials and Devices, 2000, pp. 149-174.
[76] C. H. Chen, X. J. Yi, J. Zhang and X. R. Zhao, "Linear uncooled microbolometer array based on VOx thin films," Infrared Physics & Technology, vol.42, no. 2, 2001, pp. 87-90.
[77] J. Honer, "Chromate Post Treatments, "Metal Finishing, vol. 88, no. 2, 1990, pp. 76.
[78] J. B. Mohler, "Corrosion of coated metals. 3. Conversion coatings," Metal Finishing, vol. 73, 1974, pp. 30-33.
[79] I. Azkarate, P. Cano, A. Del Barrio, M. Insausti, P. Santa Coloma, "Alternativesto Cr(Ⅵ) conversion coatings for magnesium alloys," Germany: Wiley-VCH Verlag GmbH, 2000.
[80] M.A. Gonzalez-Nunez, P. Skeldon, G. E. Thompson, H. Karimzadeh, Corrosion, " Kinetics of the Development of a Nonchromate Conversion Coating for Magnesium Alloys and Magnesium-Based Metal Matrix Composites," vol. 55, no. 12, 1999, pp. 1136.
[81] A.L. Rudd, C.B. Breslin, F. Mansfeld, "The corrosion protection afforded by rare earth conversion coatings applied to magnesium," Corrosion Science, vol. 42, no. 2, 2000, pp. 275-288.
[82] A.U. Simaranov, S.L. Marshakov, Yu.N. Mikhailovskii, "THE COMPOSITION AND PROTECTIVE PROPERTIES OF CHROMATE CONVERSION COATINGS ON MAGNESIUM," PROTECTION OF METALS, vol. 28, no. 5, 1992, pp. 576-580.
[83] 程偉堃,鎂合金微弧陽極處理,碩士論文,國防大學中正理工學院應用化學研究所,桃園,2005。[84] W. P. Innes, Electroplating and Electroless Plating on Magnesium and Magnesium Alloys, New York: Wiley-Interscience, 1974, pp. 601.
[85] 楊聰仁,「鎂合金非鉻系表面處理技術」,工業材料雜誌,174期,2001,第97-101。
[86] 陳譽升,AZ31鎂合金之鉻酸鹽及過錳酸鹽化成處理,碩士論文,大葉大學機械工程學系,彰化,2004。[87] P. L. Hagans, C. M. Haas, Chromate conversion coatings, ASM Handbook, Surface Engineering, vol. 5, ASM International, 1994, pp.405.
[88] C. F. Baes, R. E. Mesmer, Hydrolysis of Cation, Melbourne, Robert E. Krieger Publishing Co., 1986, pp. 210.
[89] D.S. Tawil, "Corrosion and surface protection developments", magnesium technology in Proceedings of the Conference, 1986, pp. 66.
[90] C. K. Mittal, "Chemical conversion and anodized coatings," TRANSACTIONS OF THE METAL FINISHERS ASSOCIATION OF INDIA, vol. 4, no. 4, 1995, pp. 227-237.
[91] J. B. Hajdu, E. F. Yarkosky, P. A. Cacciatore, M. H. Suplicki, "Electroless nickel processes for memory disks," Symposium on Magnetic Materials, 1990, pp. 685.
[92] 邱六合,林信安,「鎂合金腐蝕與表面處理」,輕金屬特刊,6 月號,91 年,第118-124 頁。[93] M. Pourbaix, "Atlas of Electrochemical Equilibria in Aqueous solution," America: NACE 1974, Ch.6, pp.139.
[94] A. K. Sharma, H. Narayanamurthy, H. Bhojarej, J. Md. Mohideem, "Gold plating on magnesium alloys for space applications," Metal Finishing, vol. 91, no. 3, 1993, pp. 34-40.
[95] D. Crotty, C. Stinecker, B. Durkin, "Plating Difficult Substrates with Electroless Nickel," Products Finishing, vol. 60, 1996, pp. 44.
[96] T. Biestek and J. Weber, "Electrolytic and Chemical Conversion Coatings," Poland: Portcullis Press, 1976, pp. 208-210, 306-311.