跳到主要內容

臺灣博碩士論文加值系統

(44.220.255.141) 您好!臺灣時間:2024/11/13 10:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖良錡
研究生(外文):Liang-Chi Liao
論文名稱:製備一維二氧化釩奈米管之研究
論文名稱(外文):The study of preparing one way dimension vanadium oxide nanometer tube
指導教授:楊重光楊重光引用關係張玉岑
口試委員:陳建仲葛明德
口試日期:2011-01-17
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:87
中文關鍵詞:陽極處理奈米模板化成處理法
外文關鍵詞:AnodizingOxide TemplatesChemical treatment methods
相關次數:
  • 被引用被引用:0
  • 點閱點閱:267
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究分為兩部分,包括:(1)以商用鋁板(#1070)做為鋁陽極處理膜(Anodic Aluminum Oxide, AAO)之基材,製作奈米模板。(2)使用奈米模板利用化成處理法製備氧化釩(VxOy)奈米柱。
鋁板經電解拋光後,利用不同濃度的硫酸與草酸之電解液於實驗條件控制下經過陽極處理(AAO), 獲得不同深寬比之奈米模板,以場發電子顯微鏡(Field emission-scanning electron microscope, FE-SEM)及能量散射光譜儀(Energy dispersive spectrometer, EDS)觀察獲得約40~80nm之奈米孔洞。鋁板經電化學製程後,表面會形成具高孔隙度、均一孔徑、規則孔洞分佈之高品質奈米模板薄膜,使用化成處理法,利用釩酸鈉(Na3VO4)溶液為化成液,並利用外加電壓輔助,使釩離子能沉積於AAO模板內,乾燥後VxOy奈米柱方可形成。將以上所製作之VxOy奈米柱,以磷酸(5vol%)於恆溫(25℃)下移除奈米模板,製成奈米柱,利用化學分析能譜儀(Electron Spectroscopy for Chemical Analysis, ESCA)分析其化成產物及研究產物之物理、化學性質。


This study is divided into two parts. First, the commercial aluminum (# 1070) as anodized aluminum films (Anodic Aluminum Oxide, AAO) of the substrate is used to produce nanotemplates. Second, nanotemplates with using Chemical treatment were prepared vanadium oxide (VxOy) nanorods.
Polished aluminum by electrolysis, using different concentrations of sulfuric acid and oxalic acid in the experimental conditions of the electrolyte through the anode under the control of processing (AAO), to obtain nano particle with different aspect ratio of template in field emission electron microscope (Field Emission-Scanning Electron Microscope, FE-SEM) and energy dispersive spectroscopy (Energy Dispersive Spectrometer, EDS) observation of about 40~80 nm nano holes. Aluminum by electrochemical process, the surface will form a high porosity, uniform pore size, pore distribution of the rules of high-quality thin film nanotemplates, use the conversion treatment method using sodium vanadate (Na3VO4) solution as the liquid, and use additional auxiliary voltage, so that vanadium ions can be deposited in the AAO template, the dry VxOy nanorods until be formed. It will be produced above the VxOy nanorods phpsphate(5vol%) at constant temperature(25℃) to remove the nanotemplates, made nanorods by ESCA(Electron Spectroscopy for Chemical Analysis, ESCA). Product and research analysis into the product of the physical and chemical properties.


目 錄

中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 前言 1
1-1光觸媒概述 1
1-2 研究動機及目地 2
第二章 文獻回顧 4
2-1 一維奈米材料製備方法 4
2-2 氧化鋁奈米模板 9
2-2-1 氧化鋁奈米模板製備原理 9
2-2-2 多孔氧化膜生成機制 12
2-2-3鋁基材前處理-電解拋光 16
2-3 陽極處理後鋁奈米模板之應用 19
2-4 氧化釩概述 23
2-4-1 氧化釩之光、電特性研究背景 24
2-5 常見化成處理系統 28
2-5-1 鉻酸鹽化成處理 28
2-5-2 磷酸鹽化成處理 29
2-5-3 錫酸鹽化成處理 30
2-5-4 稀土族化成處理 30
2-5-5 釩酸鹽化成處理系統 31
第三章 實驗方法與流程 32
3-1 實驗原料 32
3-2 實驗設備 32
3-3 實驗流程 34
3-3-1 陽極處理流程 34
3-3-1-1 對鋁基材的電化學拋光 35
3-3-1-2 對鋁基材的陽極處理 36
3-3-2 一維奈米陣列 38
3-4 分析方法 40
3-4-1 SEM、EDS 40
3-4-2 AFM 41
3-4-3 ESCA 44
3-4-4 OCP 44
3-4-5 ICP 45
3-4-6 Raman Laser 46
3-4-7 XRD 47

第四章 結果與討論 50
4-1 製備氧化鋁奈米模板 50
4-1-1 表面微結構對製備氧化鋁奈米模板之影響 50
4-2-2 不同電解液對製備氧化鋁奈米模板之影響 55
4-2 製備VxOy奈米柱陣列 57
4-2-1 外加電壓對製備VO2奈米柱陣列之影響 57
4-2-2 濃度對製備VO2奈米柱陣列之影響 58
4-2-3 溫度對製備VO2奈米柱陣列之影響 60
4-2-4 沉積時間對製備VO2奈米柱陣列之影響 62
4-2-5 孔徑對製備VO2奈米柱陣列之影響 66
4-2-6 移除奈米模板時間對VO2奈米柱陣列之影響 72
4-3奈米柱陣列分析 73
4-3-1 EDS分析 73
4-3-2 ICP分析 75
4-3-3 XRD分析 75
第五章 結論與未來展望 77
5-1結論 77
5-2未來展望 77
參考文獻 78


[1] A. Fujishima, K. Honda, "Electrochemical Photolysis of Water at a Semiconductor Electrode," Nature, vol. 238, 1972, pp. 37-38.
[2] J. Gautron, P. Lemasson, B. Poumellec, J.F. Marucco, "Photoelectrochemical study of (Ti, V) O2 and (Ti, Nb)O2 alloys, " Solar Energy Materials vol. 9, no. 1, 1983, pp. 101-111.
[3] G. R. Bamwenda, S. Tsubota, T. Nakamura, M. Haruta, "Photoassisted hydrogen production from a water-ethanol solution: a comparison of activities of AuTiO2 and PtTiO2," Journal of Photochemistry and Photobiology A: Chemistry, vol. 89, no. 2, 1995, pp. 177-189.
[4] H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, R.E. Smalley, "C60: Buckminsterfullerene," Nature, vol. 318, 1985, pp. 162-163..
[5] S. Iijima, "Helical microtubules of graphitic carbon," Nature, vol. 354, 1991, pp. 56-58.
[6] R. S. Wanger, W. C. Ellis, "Vapor‐liquid‐solid mechanism of single crystal growth " Applied Physics Letters, vol. 4, no. 89, 1964.
[7] D. Wang , H. Dai, " Germanium nanowires: from synthesis, surface chemistry, and assembly to devices " APPLIED PHYSICS A: MATERIALS SCIENCE & PROCESSING, vol. 85, no. 3, 2006, pp. 217-225.
[8] D. P. Yu, Q. I. Hang, Y. Ding, "Nanoscale silicon wires synthesized using simple physical evaporation " Applied Physics Letters, vol.72, no.26, 1998, pp. 3458.
[9] G. E. Possin, " A Method for Forming Very Small Diameter Wires"Review of Scientific Instruments., vol. 41, no.5, 1970, pp.772.
[10] L. Sun, P. C. Searson, "Electrochemical deposition of nickel nanowire arrays in single-crystal mica films " Applied Physics Letters, vol. 74, 1999, pp. 2803-2805.
[11] T. M. Whitney, J. S. Jiang, P. C. Searson, C. L. Chien, "Fabrication and Magnetic Properties of Arrays of Metallic Nanowires," Science, vol. 261, no. 5126, 1993, pp. 1316-1319.
[12] A. P. Li, F. Muller, A. Birner, K. Nielsch, U. J. Gosele, "Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina "Applied Physics Letters, vol. 84, no.11, 1998, pp. 6023.
[13] H. Li, C. L. Xu, G. Y. Zhao, H. L. Li, "Electrodeposition of ferromagnetic nanowire arrays on AAO/Ti/Si substrate for ultrahigh-density magnetic storage devices," Materials Letters, vol.60, no. 19, 2006, pp.2335-2338.
[14] C. G. Jin, G. W. Jiang, W. F. Liu, W. L. Cai, L. Z. Yao, Z. Yao, X. G. Li, "Fabrication of large-area single crystal bismuth nanowire arrays," Journal of Materials Chemistry, no. 13, 2003, pp.1743-1746.
[15] J. U. Cho, Q. X. Liu, J. H. Min, S. P. Ko, Y. K. Kim, "Effect of external magnetic field on anisotropy ofCo/Cu multilayer nanowires " Journal of Applied Physics Vol.99 no. 8, 2006, pp. 909.
[16] S. K. Thamida, H.C. Chang, "Nanoscale pore formation dynamics during aluminum anodization, " Chaos, vol. 12, no. 1, 2002, pp. 240-251
[17] F. Li, L. Zhang, R. M. Metzger, "On the growth of highly ordered pores in anodizied alumiunm oxide," Chemistry of Materials, vol. 10, no. 9, 1998 pp. 2470-2480.
[18] A. P. Li, F. Muller, A.Birner, K. Nielsch, U. Gosele, "Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anobic," Journal of Applied Physics, vol. 84, no. 11, 1998, pp.6023-6026.
[19] O. Jessensky, F. Muller, U. Gosele, "Self-organized formation of hexagonal pore arrays in anodic alumina," Journal of Applied Physics, vol. 72, no. 10, 1998, pp. 1173-1175.
[20] I. Vrublevsky, V. Parkoum, V. Sokol, J. schreckenbach, G. Marx, "The study of the volume expansion of aluminum during porous oxide formation at galvanostatic regime,"Applied Surface Science, vol. 222, no.1-4, 2004, pp. 215-225.
[21] I. Vrublevsky, V. Parkoum, J. schreckenbach, G. Marx, "Study of porous oxidefilm growth on aluminum in oxalic acid using a re-anodizing technique," Applied Surface Science, vol. 227, no. 1-4, 2004, pp.282-292.
[22] J. Zou, L. Pu, X. Bao, D. Feng, "Branchy alumina nanotubes," Applied Physics Letters, vol. 80, no. 6, 2002, pp.1079-1081.
[23] Y. C. Sui, B. Z. Cui, L. Martinez, R. Perez, and D. J. Sellmyer,"Pore structure, barrier layer topography and matrix alumina structure of porous anodic alumina film," Thin Solid Films, vol. 406,no. 1-2, 2002, pp.64-69.
[24] A. Mozalev, S. Magaino, H. Imai, "The formation of nanoporous membranesfrom anodically oxidized aluminum and their application to Li rechargeable batteries," Electrochemica Acta, vol. 46, no. 18, 2001, pp.2825-2834.
[25] Y. T. Tian, G. W. Meng, T. Gao, S. H. Sun, T. Xie, X. S. Peng, "Alumina nanowire arrays standing on a porous anodic alumina membrane," Nanotechnology, vol. 15, no. 1, 2004, pp.189-191.
[26] J. Newby, K. Mills, ASM Metals Handbook,Metallography and microstructures, ASM International, 1985, pp. 48.
[27] P. A. Jacquet, "Electrolytic polishing of metallic surface," Metallurgical Reviews, vol. 1, 1956, pp. 157-238.
[28] P. V. Schigolev, Electrolytic and chemical polishing of metal, Tel Aviv, Israel , Freund Publishing House, 1970.
[29] A. I. Vorobyova, V. A. Sokil, E. A. Outkina, "SEM investigation of pillared microstructures formed by electrochemical anodization," APPLIED PHYSICS A: MATERIALS SCIENCE & PROCESSING, vol. 67, no. 4, 1998, pp.487-492.
[30] A. I. Vorobyova, E. A. Outkina,"Study of pillar microstructure formation with anodic oxides," Thin Solid Films, vol. 324, no.1, 1998, pp.1-10.
[31] 陳柏林,奈米碳管與氧化鈦奈米點之陽極氧化鋁模板輔助成長與電子場效發射,博士論文,國立交通大學材料科學與工程學系,新竹,2005。
[32] P. Gu, J. H. Zhao, G. H. Li, M. Gong, "Highly ordered carbon nanotube arrays with open ends grown in anodic alumina nanoholes," JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY MATERIALS SCIENCE EDITION, vol. 18, no. 1, 2003, pp. 7-8.
[33] S. K. Hwang, J. H. Lee, S. H. Jeong, P. S. Lee, K. H. Lee, "Fabrication of carbon nanotube emitters in an anodic aluminium oxide nanotemplate on a Si wafer by multi-step anodization," Nanotechnology, vol. 16, no.6, 2005, pp.850-858.
[34] T. Qiu, X. L. Wu, G. S. Huang, G. G. Siu, Y. F. Mei, F. Kong, M. Jiang, "Individual alumina nanotubes coaxially wrapping carbon nanotubes and nanowires," Thin Solid Films, vol. 478, no. 1-2, 2005, pp. 56-60.
[35] Y. Yang, H. Chen, Y. F. Mei, J. B. Chen, X. L. Wu, X. Bao, "Anodic alumina template on Au/Si substrate and preparation of CdS nanowires," Solid State Communications, vol. 123, no.6-7, 2002, pp.279-282.
[36] D. Routkevitch, A. A. Tager, J. Haruyama, D. Almawlawi, M. Moskovits, J. M. Xu, "Nonlithographic nano-wire arrays: Fabrication, Physics, and device applications," IEEE Transactions on Electron Devices, vol. 43, no.10, 1996, pp.1646-1658.
[37] R. K. Nahar, "Study of the performance degradation of thin film aluminum oxide sensor at high humidity," Sensors and Actuators, B: Chemical, vol. 63, no. 1-2, 2000, pp.49-54.
[38] R. K. Nahar, V. K. Khanna, "Ionic doping and inversion of the characteristic of thin film porous Al2O3 humidity sensor," Sensors and Actuators, B: Chemical, vol. 46, no. 1, 1998, pp.35-41.
[39] G. Sberveglieri, R. Anchisini, R. Murri, C. Ercoli, N. Pinto, "Al2O3 sensor for low humidity content: characterization by impedance spectroscopy," Sensors and Actuators, B: Chemical, vol. 32, no. 1, 1996, pp. 1-5.
[40] W. G. Yelton, K. B. Pfeifer, A. W. Staton, "Porous Al2O3 nanogeometry sensor films: Growth and analysis," Journal of the Electrochemical Society, vol. 149, no. 1, 2002, pp.1-5.
[41] F. J. Morin, "Oxides Which Show a Metal-to-Insulator Transition at the Neel Temperature," Physical Review Letters, vol. 3, no. 1, 1959, pp. 34-36.
[42] W. Rstoker, The Metallurgy of Vanadium, New York, John Wiley & Sons, 1958.
[43] H. B. Scaches, Semiconducting Temperature Sensors and their Applications, New York: John Wiley & Sons, 1975.
[44] B. F. Briffing, S. P. Faile, J. M. Honig, "Evidence for one-dimensional spin order in V3O5," Physical. Review B, vol. 21, no. 1, 1980, pp. 154-158.
[45] R.J.H. Clark, The Chemistry of Titanium and Vanadium, Amsterdam, Elsevier, 1968.
[46] R. J. Keyes, Optical and Infrared Detectors, Thermal Detectors, New York Springer-Verlag, 1997.
[47] S.M. Babulanam, T.S. Eriksson, G.A. Niklasson, C.G. Granqvist, "hermochromic VO2 films for energy-efficient windows," Solar Energy Materials, vol. 16, no. 5, 1987, pp. 347-363.
[48] M. Soltani, M. Chaker, E. Haddad, R.V. Kruzelecky, D. Nikanpour, "Optical switching of vanadium dioxide thin films deposited by reactive pulsed laser deposition " Journal of Vacuum Science & Technology A, vol. 22, no. 3, 2004, pp. 859-864.
[49] A. Cavalleri, C. Toth, C.W. Siders, J.A. Squier, F. Raksi, P. Forget, J.C. Kieffer, "Femtosecond structural dynamics in VO2 during a solid-to-solid phase transition," Physical Review Letters, vol. 87, no.23, 2001, pp. 237-241.
[50] D. Xiao, K.W. Kim, J.M. Zavada, "Electrically Programmable Photonic Crystal Slab Based on the Metal-Insulator Transition in VO2," Journal of Applied Physics , vol. 97, no. 10, 2005, pp.106-108.
[51] C. Chen, X. Yi, X. Zhao, and B. Xiong, Sens. "Characterizations of VO2-based uncooled microbolometer linear array," Sensors and Actuators A: Physical, vol.90, no. 3, 2001, pp. 212-214.
[52] D. Zintu, G. Tosone, and A. Mercuri, "Dual ion beam sputtering vanadium dioxide microbolometers by surface micromachining," Infrared Physics & Technology, vol. 43, no, 3-5, 2002, pp. 245-250.
[53] S. Minomora and H. Nagasaki, "The effect of pressure on the metal-to-insulator transition in V2O4 and V2O3," Journal of the Physical Society of Japan, vol. 19, no. 1, 1964, pp. 131.
[54] C. N. Berglund, H. J. Guggenheim, "Electronic Properties of VO2 near the Semiconductor-Metal Transition," Physical Review online Archive, vol. 185,no. 3, 1969, pp. 1022-1033.
[55] C. N. Berglund, A. Jayaroman, "Hydrostatic-Pressure Dependence of the Electronic Properties of VO2 Near the Semiconductor-Metal Transition Temperature," Physical Review online Archive, vol. 185, no. 3, 1969, pp. 1034-1039.
[56] J. F. De Natale, P. J. Hood, A. B. Harker, "Formation and characterization of grain‐oriented VO2 thin films," Journal of Applied Physics, vol. 66, no. 12, 1989, pp. 5844-5850.
[57] B. Goodenough, "The two components of the crystallographic transition in VO2," Journal of Applied Physics, vol. 3, no. 4, 1971, pp. 490-500.
[58] W. R. Roach, "Holographic Storage in VO2," Applied Physics Letters, vol. 19, 1971, pp. 453-455.
[59] W. Haidinger, D. Gross, "Anomalous hysteresis shape of thin VO2 layers," Thin Solid Film, vol. 12, no. 2, 1972, pp. 433-438.
[60] G. V. Jorgensen, J. C. Lee, "Doped vanadium oxide for optical switching films," Solar Energy Mater, vol. 14, no. 3-5, 1986, pp. 205-214.
[61] J. Livage, G. Guzman, F. Beteille and P. Davidson, " Optical properties of sol–gel derived vanadium oxide lms," JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, vol. 8, no.1-3, 1997, pp. 857-865.
[62] A. W. Smith, "Optical storage in VO2 films," Applied Physics Letters, vol. 23, no. 8, 1973, pp. 437-438.
[63] D. D. Eden, "VANADIUM DIOXIDE STORAGE MATERIAL," Optical engineering : the journal of the Society of Photo-optical Instrumentation Engineers, vol. 20, no. 3, 1981, pp. 377-378.
[64] M. Fukuma, S. Zembutsu, S. Miyazawa, "Preparation of VO2 thin film and its direct optical bit recording characteristics," Applied Optics, vol. 22, no. 2. 1983, pp. 265-268.
[65] T. Ohno, F. Tanigawa, K. Fujihara, S. Izumi, M. Matsumura," Photocatalytic oxidation of water by visible light using ruthenium-doped titanium dioxide powder," Journal of Photochemistry and Photobiology A: Chemistry, vol. 127, no. 1-3, 1999, pp. 107-110.
[66] Xingjina Yi, Changhong Chen, Luqin Liu, Yingrui Wang, Bifeng Xiong, Hongchen Wang, Sihai Chen,"A new fabrication method for vanadium dioxide thin films deposited by ion beam sputtering," Infrared Physics & Technology, vol. 44, no. 2, 2003, pp. 137-141.
[67] Changhong Chen, Xingjina Yi, Jing Zhang, Xingrong Zhao, "Linear uncooled microbolometer array based on VOx thin films," Infrared Physics & Technology, vol. 42, no. 2, 2001, pp. 87-90.
[68] Changhong Chen, Xingjina Yi, Xingrong Zhao, Bifeng Xiong, " Preparation and properties of vanadium dioxide thin films for uncooled microbolometer, " Infrared and Millimeter Waves, Beijing , China., 2000, pp.145-146.
[69] Changhong Chen, Xingjina Yi, Xingrong Zhao, Bifeng Xiong, "Characterizations of VO2 -based uncooled microbolometer linear array," Sensors and Actuators A: Physical, vol. 90, no. 3, 2001, pp. 212-214 ,(2001)
[70] V. Yu. Zerov, Yu. V. Kulikov, V. G. Malyarov, I. A. Khrebtov, I. I. Shaganov, E. B. Shadrin, "Vanadium oxide films with improved characteristics for ir microbolometric matrices," Technical Physics Letters, vol. 27 no. 5, 2001, pp. 378-380.
[71] D. Zintu, G. Tosone, A. Mercuri, "Dual ion beam sputtering vanadium dioxide microbolometers by surface micromachining," Infrared Physics & Technology, vol. 43, no.3-5, 2002, pp. 245-250.
[72] M. B. Sahana, M. S. Dharmaprakash, S. A. Shivashankar, "Microstructure and properties of VO2 thin films deposited by MOCVD from vanadyl acetylacetonate," Journal of Materials Chemistry, vol. 12, no. 2, 2002, pp. 333-338.
[73] R. T. Rajendra, B. Karunagaran, D. Mangalaraj, Sa. K. Narayandass, P. Manoravi, M. Joaeph, Vishnu Gopal, R. K. Madaria, J. P. Singh," Room temperature deposited vanadium oxide thin films for uncooled infrared detectors,"Materials Research Bulletin, vol. 38, no. 7, 2003, pp. 1235-1240.
[74] A. Rogalski, Infrared detector, Gordon and Breach Science Publishers, Amsterdam, 2000.
[75] R. A. Wood, Infrared Detector and Emitters: Materials and Devices, 2000, pp. 149-174.
[76] C. H. Chen, X. J. Yi, J. Zhang and X. R. Zhao, "Linear uncooled microbolometer array based on VOx thin films," Infrared Physics & Technology, vol.42, no. 2, 2001, pp. 87-90.
[77] J. Honer, "Chromate Post Treatments, "Metal Finishing, vol. 88, no. 2, 1990, pp. 76.
[78] J. B. Mohler, "Corrosion of coated metals. 3. Conversion coatings," Metal Finishing, vol. 73, 1974, pp. 30-33.
[79] I. Azkarate, P. Cano, A. Del Barrio, M. Insausti, P. Santa Coloma, "Alternativesto Cr(Ⅵ) conversion coatings for magnesium alloys," Germany: Wiley-VCH Verlag GmbH, 2000.
[80] M.A. Gonzalez-Nunez, P. Skeldon, G. E. Thompson, H. Karimzadeh, Corrosion, " Kinetics of the Development of a Nonchromate Conversion Coating for Magnesium Alloys and Magnesium-Based Metal Matrix Composites," vol. 55, no. 12, 1999, pp. 1136.
[81] A.L. Rudd, C.B. Breslin, F. Mansfeld, "The corrosion protection afforded by rare earth conversion coatings applied to magnesium," Corrosion Science, vol. 42, no. 2, 2000, pp. 275-288.
[82] A.U. Simaranov, S.L. Marshakov, Yu.N. Mikhailovskii, "THE COMPOSITION AND PROTECTIVE PROPERTIES OF CHROMATE CONVERSION COATINGS ON MAGNESIUM," PROTECTION OF METALS, vol. 28, no. 5, 1992, pp. 576-580.
[83] 程偉堃,鎂合金微弧陽極處理,碩士論文,國防大學中正理工學院應用化學研究所,桃園,2005。
[84] W. P. Innes, Electroplating and Electroless Plating on Magnesium and Magnesium Alloys, New York: Wiley-Interscience, 1974, pp. 601.
[85] 楊聰仁,「鎂合金非鉻系表面處理技術」,工業材料雜誌,174期,2001,第97-101。
[86] 陳譽升,AZ31鎂合金之鉻酸鹽及過錳酸鹽化成處理,碩士論文,大葉大學機械工程學系,彰化,2004。
[87] P. L. Hagans, C. M. Haas, Chromate conversion coatings, ASM Handbook, Surface Engineering, vol. 5, ASM International, 1994, pp.405.
[88] C. F. Baes, R. E. Mesmer, Hydrolysis of Cation, Melbourne, Robert E. Krieger Publishing Co., 1986, pp. 210.
[89] D.S. Tawil, "Corrosion and surface protection developments", magnesium technology in Proceedings of the Conference, 1986, pp. 66.
[90] C. K. Mittal, "Chemical conversion and anodized coatings," TRANSACTIONS OF THE METAL FINISHERS ASSOCIATION OF INDIA, vol. 4, no. 4, 1995, pp. 227-237.
[91] J. B. Hajdu, E. F. Yarkosky, P. A. Cacciatore, M. H. Suplicki, "Electroless nickel processes for memory disks," Symposium on Magnetic Materials, 1990, pp. 685.
[92] 邱六合,林信安,「鎂合金腐蝕與表面處理」,輕金屬特刊,6 月號,91 年,第118-124 頁。
[93] M. Pourbaix, "Atlas of Electrochemical Equilibria in Aqueous solution," America: NACE 1974, Ch.6, pp.139.
[94] A. K. Sharma, H. Narayanamurthy, H. Bhojarej, J. Md. Mohideem, "Gold plating on magnesium alloys for space applications," Metal Finishing, vol. 91, no. 3, 1993, pp. 34-40.
[95] D. Crotty, C. Stinecker, B. Durkin, "Plating Difficult Substrates with Electroless Nickel," Products Finishing, vol. 60, 1996, pp. 44.
[96] T. Biestek and J. Weber, "Electrolytic and Chemical Conversion Coatings," Poland: Portcullis Press, 1976, pp. 208-210, 306-311.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top