中文文獻
[1]王一雄,土壤環境污染與農藥,台北:國立編譯館,1997。
[2]楊靖民,營建工地懸浮微粒中金屬元素之特微,碩士論文,國立成功大學環境工程學研究所,台南,1999。(2[3]張智宏,營建工地周界大氣中懸浮微粒乾沉降特徵之研究,碩士論文,靜宜大學應用化學研究所,台中,1999。[4]曾郁雯,燃煤火力發電廠底灰與都市垃圾共同掩埋對滲出水水質影響之研究,碩士論文,逢甲大學環境工程與科學研究所,台中,1999。29-[5]蘇建中,半導體工業區空氣污染物之懸浮微粒的調查分析,碩士論文,國立清華大學原子科學研究所,新竹,2000。260)[6]林春賓,油站附近空氣中MTBE暴露評估過程中之不確定性研究,碩士論文,國立雲林科技大學環境與安全工程研究所,雲林,2002。[7]謝徨麒,固定污染源排放金屬元素之特徵,碩士論文,國立成功大學環境工程學研究所,台南,2001。[8]謝振友,台北市垃圾焚化爐排氣對周界懸浮微粒之影響評估,碩士論文,國立台灣大學環境工程學研究所,台北,2001。[9]廖崇圜,應用CMB受體模式和ISC模式評估PM10污染來源及減量效益,碩士論文,國立中興大學環境工程學研究所,2001。[10]高仁和,以測站平行檢測及逆軌跡模式探討潮州地區高PM10濃度之成因,碩士論文,國立屏東科技大學環境工程與科學研究所,2002。[11]林清和,ISC3之基本理論介紹,2002。
[12]呂金堂,以Serratia marcescens P-125吸附重金屬之研究,碩士論文,大同大學生物工程研究所,台北,2002。[13]蔡勝雄,空品區總量管制固定源SO2排放量與增量限值變異研究,碩士論文,國立高雄第一科技大學環境與安全衛生工程研究所,高雄,2002。[14]郭肇東,燃煤電廠SOX、CO2 空污減量方案之環境效益與評估模型構建,碩士論文,國立成功大學工學院工程管理研究所,台南,2003。[15]楊慧庭,中部地區大氣落塵成分之物化性質探討,碩士論文,國立中興大學土壤環境科學研究所,台中,2003。[16]詹長權,行政院衛生署國民健康局,健康風險評估指引,2003。
[17]柳萬霞,銅二次熔煉業之戴奧辛最佳控制技術及其風險評估之研究,碩士論文,國立臺北科技大學環境工程與管理研究所,台北,2004。[18]陳富平,大氣次微米微粒(PM1)多環芳香烴化合物(PAHs)之特性研究,碩士論文,國立高雄第一科技大學環境與安全衛生工程研究所,高雄,2004。[19]黃美惠,燃煤程序重金屬排放特性之初步研究,碩士論文,國立中央大學環境工程研究所,桃園,2005。[20]彭振益,焚化爐污染風險與公平性之研究,碩士論文,朝陽科技大學環境工程與管理研究所,台中,2005。[21]王秋森、陳時欣,氣膠技術學,台北:新文京開發出版股份有限公司,2005。
[22]台灣電力股份有限公司,「B發電廠更新擴建計劃」環境影響說明書定稿本,2006。
[23]許惠悰,風險評估與風險管理,台北:新文京開發出版股份有限公司,2006。
[24]郭育良,職業病概論,台北:華杏出版機構,2007。
[25]吳思翰,以不同活性碳注射濃度對燃煤電廠燃燒粉河盆地煤的汞吸附影響之探討與研究,碩士論文,龍華科技大學工程技術研究所,桃園,2008。[26]許坤合,社區落塵污染特性及其來源比對之研究-以A社區為例,碩士論文,國立臺北科技大學環境工程與管理研究所,台北,2008。[27]吳幸娟、李聯雄,行政院勞工委員會勞工安全衛生研究所,我國勞工作業場所健康風險評估常用暴露參數先驅研究,2008。
[28]金和泰實業有限公司汐止廠,空氣污染物(TSP)增量模式分析報告,2009。
[29]行政院環保署,98年空氣品質監測年報,2009。
[30]盧彥勳,大氣中微粒污染與重金屬成分之模擬與分析,碩士論文, 東海大學環境工程與科學研究所,2009。[31]新系環境技術有限公司,ISC使用手冊,2009。
[32]羅振宇,二次燒結飛灰特性及其微波酸解處理之研究,碩士論文,國立臺北科技大學環境工程與管理研究所,台北,2009。[33]中興工程顧問股份有限公司,98年度台北市空氣品質改善計畫規劃整合暨成效評核計畫,2009。
[34]郭家豪,都市垃圾焚化廠及燃煤電廠煙道廢氣排放戴奧辛/呋喃對環境大氣品質之影響評估,碩士論文,國立成功大學環境工程研究所,台南,2009。英文文獻
[1]Abdul-Wahab, S. A. “Monitoring of nitrogen dioxide in and around an Oman liquid natural gas plant using passive diffusion tubes: exposure and ISCST model study,” International Journal of Environment and Pollution, Vol. 18(6), 2002, pp. 558–570.
[2]Abdul-Wahab, S. A., A. Elkamel, A. S. Al Balushi, A. M. Al-Damkhi, and R. A. Siddiqui, “Modeling of nitrogen oxides (NOx) concentrations resulting from ships at berth,” Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, Vol. 43(14), 2008, pp. 1706-1716.
[3]Al-Rashidi M. S., V. Nassehi and R. J. Wakeman, “Investigation of the efficiency of existing air pollution monitoring sites in the state of Kuwait,” Environmental Pollution, Vol. 138(2), 2005, pp. 219-229.
[4]Barton, R. G., W. D. Clark and W. R. Seeker, “Fate of metals in waste combustion systems,” Combust. Sci. and Tech, Vol. 74, 1990, pp. 327-342.
[5]Hanna, S. R., J. S. Chang and D. G. Strimaitis, “Uncertainties in Source Emission Rate Estimates Using Dispersion Models,” Atmosphere Environment, Vol. 24 (12), 1990, pp. 2971-2980.
[6]Kinnee, E. J., J. S. Touma, R. Mason, J. Thurman, A. Beidler, C. Bailey and R. Cook, “Allocation of onroad mobile emissions to road segments for air toxics modeling in an urban area,” Transportation Research Part D: Transport and Environment, Vol. 9(2), 2004, pp. 139-150.
[7]Levy, J. I., J. D. Spengler, D. Hlinka, D. Sullivan and D. Moon, “Using CALPUFF to evaluate the impacts of power plant emissions in Illinois: model sensitivity and implications,” Atmospheric Environment, Vol. 36(6), 2002, pp. 1063-1075.
[8]Lewellen, W. S. and R. I. Sykes, “Meteorological Data Needs for Modeling Air Quality Uncertainties,” Journal of Atmospheric and Oceanic Technology, Vol. 6, 1989, pp. 759-768.
[9]Liu, G. J., H. Y. Zhang, L. F. Gao, L. G. Zheng and Z. C. Peng, “Petrological and mineralogical characterizations and chemical composition of coal ashes from power plants in Yanzhou mining district, China,” Fuel Processing Technology, Vol. 85(15) , 2004, pp. 1635-1646.
[10]Lorber, M., A. Eschenroeer and R. Robinson, “Testing the USA EPA’s ISCST-Version 3 model on dioxin : a comparison of predicted and observed air and soil concentrations,” Atmospheric Environment, Vol. 34, 2000, pp. 3995-4010.
[11]Manju, N., R. Balakrishnan and N. Mani, “Assimilative capacity and pollutant dispersion studies for the industrial zone of Manali,” Atmospheric Environment, Vol. 36(21), 2002, pp. 3461-3471.
[12]Mazur, M., R. Mintz, M. Lapalme and B. Wiens, “Ambient air total gaseous mercury concentrations in the vicinity of coal-fired power plants in Alberta, Canada,” Science of The Total Environment, Vol. 408(2), 2009, pp. 373-381.
[13]Mathews, A. P., “Chemical equilibrium analysis of lead and beryllium speciation in hazardous waste incinerators,” Proceedings of the Second International Symposium on Metals Speciation, Separation and Recovery, II, 1989, pp. 73-83.
[14]Olmez, I., “Instrumental neutron activation analysis of atmospheric particulate matter,” Methods of Air Sampling and Analysis, 1989, pp. 143-150.
[15]Reddy, M. S., S. Basha, H. V. Joshi and B. Jha, “Evaluation of the emission characteristics of trace metals from coal and fuel oil fired power plants and their fate during combustion,” Journal of Hazardous Materials, Vol. 123(1-3), 2005, pp. 242-249.
[16]Senior, C. L., J. J. Helbel and A. F. Sarofim, “Emission of mercury, trace element, and fine particle from stationary combustion sources,” Fuel Processing Technology, Vol. 65, 2000, pp. 263-288.
[17]Sivacoumar, R., A. D. Bhanarkar, S. K. Goyal, S. K. Gadkari and A. L. Aggarwal, “Air pollution modeling for an industrial complex and model performance evaluation,” Environmental Pollution, Vol. 111(3), 2001, pp. 471-477.
[18]Stuart, B. J. and D. S. Kosson, “Characterization of municipal waste combustion air pollution control residues as a function of particle size,” Combustion Science and Technology, Vol. 101, 1994, pp. 527.
[19]U.S. EPA, “user’s guide for the industrial source complex (ISC3) dispersion models volume 1-user instructions,” , 1995.
[20]Washington, D. C., “Risk Assessment in Federal Government-Managing the Process,” National Academy Press, U.S. NAS-NRC, 1983.
[21]Xu, M., R. Yan, C. Zheng, Y. Oiao, J. Han and C. Sheng, “Status of trace element in a coal combustion process: a review,” Fuel Processing Technology, Vol. 85(2-3), 2004, pp.215-237.
[22]Yatin, M., S. Tuncel, N. K. Aras, I. Olmez and S. Aygun, “Atmospheric trace element in Ankara, Turkey:1. factors affecting chemical composition of fine particle,” Atmospheric. Environment, Vol. 34, 2000, pp. 1305-1318.
[23]Yi, H., J. Hao, L. Duan, X. Tang, P. Ning and X. Li, “Fine particle and trace element emissions from an anthracite coal-fired power plant equipped with a bag-house in China,” Fuel, Vol 87(10-11), 2008, pp. 2050-2057.
[24]Yudovich, Y. E. and M. P. Ketris, “Mercury in coal: a review Part 2. Coal use and environmental problems,” International Journal of Coal Geology, Vol. 62(3), 2005, pp. 135-165.
[25]Zhang, C., Q. Yao and J. Sun, “Characteristics of particulate matter from emissions of four typical coal-fired power plants in China,” Fuel Processing Technology, Vol. 86(7), 2005, pp. 757-768.