跳到主要內容

臺灣博碩士論文加值系統

(44.201.94.236) 您好!臺灣時間:2023/03/24 23:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉翰燊
研究生(外文):Han-Sheng Liu
論文名稱:添加微量Mn對Al87Y8Ni5非晶質合金玻璃形成能力與機械性質之影響
論文名稱(外文):The Glass Forming Ability and Mechanical Properties of Maganese Added Al87Y8Ni5 Amorphous Alloy
指導教授:陳適範陳適範引用關係
口試委員:薄慧雲陳貞光林於隆
口試日期:2010-07-08
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:材料科學與工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:72
中文關鍵詞:熱穩定性結晶活化能微硬度
外文關鍵詞:Thermal stabilityCrystallization Activation EnergyMicrohardness
相關次數:
  • 被引用被引用:0
  • 點閱點閱:193
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
利用XRD、SEM、DSC及微硬度計對Al87Y8Ni5-xMnx (x=0, 1 and 2 at.%) 及Al87-xY8Ni5Mnx(x=1, 2, 3 and 4 at.%) 之非晶質合金薄帶進行研究。微量小原子Mn之添加使Al-Y-Ni系統隨意密堆積上升,導致其熱穩定性及機械性質皆上升: 結晶溫度與結晶活化能由Al87Y8Ni5之232°C與158.75 kJ/mole上升至Al84Y8Ni5Mn3之336°C與558.89 kJ/mole;微硬度由Al87Y8Ni5之306 Hv上升至Al84Y8Ni5Mn3之405.5 Hv。Al83Y8Ni5Mn2與Al84Y8Ni5Mn3合金系統之過冷液態區間(ΔTx)分別為28.18 K與36.74 K;γ值分別為0.327與0.358。隨著元素Mn置換元素Al之含量上升,其熱穩定性、過冷液態區間與γ值皆上升。

Al87Y8Ni5-xMnx (x=0, 1 and 2 at.%) and Al87-xY8Ni5Mnx (x=1, 2, 3 and 4 at.%) amorphous alloys was investigated by X-ray diffraction, scanning electron microscope and differential scanning calorimetry. With adding minor amount of small atom Mn, increase the random dense packing of Al-Y-Ni alloy, enhancing the thermal stability and mechanical property. The crystallization temperature and activation energy of crystallizaton have increase from 232°C and 158.75 kJ/mole to 336°C and 558.89 kJ/mole respectively, for the Al87Y8Ni5 amorphous alloy to Al84Y8Ni5Mn3 amorphous alloy; the microhardness increase from 306 Hv to 405.5Hv for the Al87Y8Ni5 amorphous alloy to Al84Y8Ni5Mn3 amorphous alloy. The supercooled liquid region and the γ value of the Al83Y8Ni5Mn2 amorphous alloy and Al84Y8Ni5Mn3 amorphous alloy are in an order of 28.18 K, 36.74 K, 0.327 and 0.358 respectively. In summary, with increasing the content of Manganese enlarge the supercooled liquid region and the γ value.

摘要 i
ABSTRACT ii
致謝 iv
目錄 v
圖目錄 viii
表目錄 xii
第一章 緒論 1
1.1 前言 1
1.2 研究目的與動機 4
第二章 理論基礎與文獻回顧 10
2.1 塊狀非晶質合金之種類 10
2.2 非晶質合金形成理論 12
2.2.1 A.Inoue三大經驗法則 12
2.3 評估玻璃形成能力之參數 14
2.3.1 臨界冷却速率(Rc)與臨界尺寸(Dmax) 14
2.3.2 過冷液態區間 15
2.3.3 簡約玻璃轉換溫度 16
2.3.4 深共晶點 17
2.3.5 γ參數 18
2.3.5.1 TTT曲線在溫度軸之平均位置與液相之穩定性 19
2.3.5.2 TTT曲線在時間軸之位置 19
2.3.5.3 推導γ參數 20
2.3.6 γm參數 28
第三章 實驗方法與流程 30
3.1 實驗流程 30
3.2 試片製備 30
3.2.1 母合金成分配製 30
3.2.2 母合金熔煉 31
3.2.3 合金薄帶製備 32
3.3 材料分析 34
3.3.1 X-ray繞射儀(XRD) 34
3.3.2掃描式電子顯微鏡(SEM)與能量分散質譜儀(EDS) 35
3.3.3示差掃描熱分析儀(DS C) 35
3.3.3.1 非恆溫分析 36
3.3.4 微硬度測試 37
第四章 結果與討論 38
4.1 元素Mn置換元素Ni : Al87Y8Ni5-xMnx 38
4.1.1 母合金鑄錠結構分析 39
4.1.2 合金薄帶結構分析與成分分析 41
4.1.3 熱性質分析 44
4.1.3.1 非恆溫熱性質分析 44
4.1.3.2 一般之非恆溫分析法-Kissinger plot 45
4.1.4 合金薄帶微硬度分析 46
4.2 元素Mn置換元素Al: Al87-xY8Ni5Mnx 49
4.2.1 母合金鑄錠結構分析 49
4.2.2 合金薄帶結構分析與成分分析 51
4.2.3 熱性質分析 54
4.2.3.1 非恆溫熱性質分析 54
4.2.3.2 一般之非恆溫分析法-Kissinger plot 57
4.2.4 熱處理 59
4.2.5 合金薄帶微硬度分析 61
第五章 結論 64
第六章 參考文獻 66







[1]www.liquid.com/technology/
[2]A. Inoue, “Bulk amorphous and nanocrystalline alloys with high functional properties, ”Materials Science& Engineering A, vol.304-306, 2001, pp. 1-10
[3]吳學陞,「新興材料-塊狀非晶質金屬材料」,工業材料,149期,1999,第154至165頁。
[4]Y. H. Kim, A. Inoue and T. Masumoto, "Ultrahigh Tensile Strengths of Al88Y2Ni9M1 (M=Mn or Fe) Amorphous Alloys Containing Finely Dispersed fcc-Al Particles, "Materials Transactions. vol. 31, 1990, pp. 747-749.
[5]A. Inoue, “Amorphous, nanoquasicrystalline and nanocrystalline alloys in Al-base systems”, Prog. In Mater. Sci., vol.43, 1998, p.420.
[6]A. Takeuchi and A. Inoue, “Classification of Bulk Metallic Glasses by Atomic Size Difference,Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element, “ Materials Transactions, Vol. 46, No. 12, 2005, pp. 2817-2829.
[7]G. Chen, X. Hui, K. Yao, H. Hou, X. Liu, M. Wang, and G. Chen, ” Observation and computer simulation of multicomponent chemical short-range order for bulk metallic glasses, “ Journal of Mineral, Metallurgy and Materials, vol. 12, 2005, pp. 143-150.
[8]Phase Diagrams for Binary Alloys: ed. H. Okamoto, (ASM International, 2000).
[9]A. Inoue, “Stabilization of metallic supercooled liquid and bulk amorphous alloys, “ Acta Materialla, vol. 48, 2000, pp. 276-306.
[10]Z. P. Lu and C. T. Liu, ”A new approach to understanding and measuring glass formation in bulk amorphous materials, ” Intermetallics, vol. 12, 2004, pp. 1035-1043.
[11]T. A. Waniuk, J. Schroers, and W. L. Johnson, “Critical cooling rate and thermal stability of Zr–Ti–Cu–Ni–Be alloys, ” Appl. Phys. Lett, vol. 78, 2001, pp. 1213–1216.
[12]D. Turnbull, “Under what conditions can a glass be formed?, ” Contemp. Phys. vol. 10, 1969, pp. 473–483.
[13]D. R. Uhlmann and H. Yinnon, in Glasses Science and Technology, Vol. 1, edited by D. R. Uhlmann and N. J. Kreidl (Academic, New York, 1983), pp. 1–47.
[14]C. A. Angell, “Relaxation in liquids, polymers and plastic crystals – Strong fragile patterns and problems, “J. Non-Cryst. Solids, vol. 131, 1991, pp. 13–31.
[15]C. A. Angell, “Formation of glasses from liquids and biopolymers, “Science , vol. 267,1995, pp. 1924–1935.
[16]D. R. Uhlmann, “A kinetic treatment of glass formation, “J. Non-Cryst. Solids, vol. 7, 1972, pp. 337–348.
[17]H. A. Davies, “The formation of metallic glasses, “Phys. Chem. Glasses, vol. 17, 1976, pp. 159–173.
[18]M. C. Weinberg, D. R. Uhlmann, and E. D. Zanotto, “Nose method of calculating critical cooling rates for glass formation, “J. Am. Ceram. Soc., vol. 72, 1989, pp. 2054–2058.
[19]N. Clavaguera, Non-equilibrium crystallization, critical cooling rates and transformation diagrams, J. Non-Cryst. Solids, vol. 162, 1993, pp. 40–50.
[20]Z. P. Lu, H. Tan, Y. Li, and S. C. Ng, “The correlation between reduced glass transition temperature and glass forming ability of bulk metallic glasses, “ Scripta Mater, vol. 42, 2000, pp. 667–673.
[21]Z. P. Lu, Y. Li, and S. C. Ng, “Reduced glass transition temperature and glass forming ability of bulk glass forming alloys, “J. Non-Cryst. Solids, vol. 270, 2000, pp. 103–114
[22]T. D. Shen and R. B. Schwarz, “Bulk amorphous Pd–Ni–Fe–P alloys: Preparation and characterization, “ J. Mater. Res., vol. 14, 1999, pp. 2107–2115.
[23]T. D. Shen and R. B. Schwarz, “Bulk ferromagnetic glasses prepared by flux melting and water quenching, “ Appl. Phys. Lett., vol. 75, 1999, pp. 49–52.
[24]H. E. Kissinger, "Reaction Kinetics in Differential Thermal Analysis," Analytical Chemistry, vol. 29, 1957, pp. 1702-1706.
[25]B. S. Murty and K. Hono, “Formation of nanocrystalline particles in glassy matrix in melt-spun Mg–Cu–Y based alloys, “Mater. Trans. JIM, vol. 41, 2000, pp. 1538–1544.
[26]R. Busch, S. Schneider, A. Peker and W. L. Johnson, "Decomposition and primary crystallization in undercooled Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 melts, "Appl. Physical Review Letter, vol. 67, 1995, pp. 1546.
[27]I. Schmidt, “Glass forming ability of alloys on the basis of Fe–C, “Z. Metallkd., vol. 74, 1983, pp. 561–583.
[28]Z. P. Lu and C. T. Liu, “A new glass-forming ability criterion for bulk metallic glasses, “Acta Mater., vol. 50, 2002, pp. 3501–3512.
[29]D. D. Thornburg, “Evaluation of glass formation tendency from rate dependent thermograms, “Mater. Res. Bull., vol. 9,1974, pp. 1481–1485.
[30]N. Clavaguera and M. T. Clavaguera-Mora, J. Casas-Vazquez, “Crystallization kinetics of a Se–Ge–Sb alloy glass, “J. Non-Cryst. Solids, vol. 22, 1976, pp. 23–27.
[31]J. Schroers, J. F. Loffler, E. Pekarskaya, R. Busch, and W. L. Johnson, “Crystallization of bulk glass forming Pd-based melts, “Mater. Sci. Forum, 2001, vol. 360–362, pp. 79–84.
[32]J. Schroers, R. Busch, S. Bossuyt, and W. L. Johnson, “Crystallization behavior of the bulk metallic glass forming Zr41Ti14Cu12Ni10Be23 liquid, “Mater. Sci. Eng. A, vol. 304–306, 2001, pp. 287–291.
[33]Z. P. Lu and C. T. Liu, “Glass formation criterion for various glass-forming systems, “Phys. Rev. Lett., vol. 91, 2003, pp. 115505.
[34]M. L. F. Nascimento, L. A. Souza, E. B. Ferreira, and E. D. Zanotto, “Can glass stability parameters infer glass forming ability?, ‘’J. Non-Cryst. Solids, vol. 351, 2005, pp. 3296–3308.
[35]W. B. Sheng, “Correlation between critical section thickness and glass-forming ability criteria of Ti-based bulk amorphous alloys, “J. Non-Cryst. Solids, vol. 351, 2005, pp. 3081–3086.
[36]W. B. Sheng, ”Evaluation on the reliability of criteria for glass-forming ability of bulk metallic glasses, “J. Mater. Sci. , vol. 40, pp. 5061–5066.
[37]J. K. Lee, D. H. Bae, S. Yi, W. T. Kim, and D. H. Kim, “Effects of Sn addition on the glass forming ability and crystallization behavior in Ni–Zr–Ti–Si alloys, “J. Non-Cryst.Solids, vol. 333, pp. 212–220.
[38]Q. S. Zhang, H. F. Zhang, Y. F. Deng, B. Z. Ding, and Z. Q. Hu, “Bulk metallic glass formation of Cu–Zr–Ti–Sn alloys, “Scripta Mater., vol. 49, 2003, pp. 273–278.
[39]E. S. Park and D. H. Kim, “Formation of Ca–Mg–Zn bulk glassy alloy by casting into cone-shaped copper mold, “J. Mater. Res., vol. 19, 2004, pp. 685–688.
[40]Y. C. Kim, W. T. Kim, and D. H. Kim, “A development of Ti-based bulk metallic glass, “Mater. Sci. Eng. A, vol. 375–377, 2004, pp. 127–135.
[41]L. Xia, M. B. Tang, M. X. Pan, W. H. Wang, and Y. D. Dong, “Glass forming ability and magnetic properties of Nd48Al20Fe27Co5 bulk metallic glass with distinct glass transition, “J. Phys. D: Appl. Phys. vol. 37, 2004, pp. 1706–1709.
[42]J. H. Kim, J. S. Park, E. Fleury, W. T. Kim, and D. H. Kim, “Effect of yttrium addition on thermal stability and glass forming ability in Fe–TM (Mn, Mo, Ni)–B ternary alloys, “Mater. Trans., vol. 45, 2004, pp. 2770–2775.
[43]D. S. Sung, O. J. Kwon, E. Fleury, K. B. Kim, J. C. Lee, D. H. Kim, and Y. C. Kim, “Enhancement of the glass forming ability of Cu–Zr–Al alloys by Ag addition, “Met. Mater. Int., vol. 10, 2004, pp. 575–579.
[44]E. S. Park, D. H. Kim, T. Ohkubo, and K. Hono, “Enhancement of glass forming ability and plasticity by addition of Nb in Cu–Ti–Zr–Ni–Si bulk metallic glasses, “J. Non-Cryst. Solids, vol. 351, 2005, pp. 1232–1238.
[45]O. N. Senkov and J. M. Scott, “Glass forming ability and thermal stability of ternary Ca–Mg–Zn bulk metallic glasses, “J. Non-Cryst. Solids, vol. 351, 2005, pp. 3087–3094.
[46]Y. X. Wei, B. Zhang, R. J. Wang, M. X. Pan, D. Q. Zhao, and W. H. Wang, “Erbium and cerium based bulk metallic glasses, “Scripta Mater., vol. 54, 2006, pp. 599–602.
[47]K. F. Yao and R. Fang, “Pd–Si binary bulk metallic glass prepared at low cooling rate, “Chin. Phys. Lett., vol. 22, 2005, pp. 1481–1483.
[48]X. K. Xi, D. Q. Zhao, M. X. Pan, and W. H. Wang,” On the criteria of bulk metallic glass formation in MgCu-based alloys, “Intermetallics, vol. 13, 2005, pp. 638–641.
[49]D. S. Song, J. H. Kim, E. Fleury, W. T. Kim, and D. H. Kim, “Synthesis of ferromagnetic Fe-based bulk glassy alloys in the Fe–Nb–B–Y system, “J. Alloys Compd., vol. 389, 2005, pp. 159–164.
[50]B. Zhang, M. X. Pan, D. Q. Zhao, and W. H. Wang, “Soft bulk metallic glasses based on cerium, “Appl. Phys. Lett., vol. 85, 2004, pp. 61–63.
[51]K. Mondal and B. S. Murty, “On the parameters to assess the glass forming ability of liquids, “J. Non-Cryst. Solids, vol. 351, 2005, pp. 1366–1371.
[52]S. Fang, X. Xiao, L. Xia, Q. Wang, W. Li, and Y. D. Dong, “Effects of bond parameters on the widths of supercooled liquid regions of ferrous BMGs, “ Intermetallics, vol. 12, 2004, pp. 1069–1072.
[53]O. N. Senkov, D. B. Miracle, and J. M. Mullens, “Topological criteria for amorphization based on a thermodynamic approach, “J. Appl. Phys., vol. 97, 2005, 103502.
[54]Z. P. Lu, C. T. Liu, C. A. Carmichael, W. D. Porter, and S. C. Deevi, “Bulk glass
formation in an Fe-based Fe–Y–Zr–M (M = Cr, Co, Al)–Mo–B system, “J. Mater. Res., vol. 19, 2004, pp. 921–929.
[55]Z. P. Lu and C. T. Liu, “A new glass-forming ability criterion for bulk metallic glasses, “Acta Mater., vol. 50, 2002, pp. 3501–3512.
[56]X. H. Du, J. C. Huang, C. T. Lu and Z. P. Lu, “New criterion of glass forming ability for bulk metallic glasses, “J. Appl. Phys., vol. 101, 2007, 086108.
[57]X. Gu, L. Q. Xing and T. C. Hufnagel, "Glass-forming ability and crystallization of bulk metallic glass (HfxZr1−x)52.5Cu17.9Ni14.6Al10Ti5, " Journal of Non-Crystalline Solids, vol. 311, 2002, pp. 77-88.
[58]R. W. Cahn, P. Haasen and E. J. Kramer, "Materials Science and Technology, " Glasses and amorphous materials, New York, 2005,pp. 493-548.
[59]許名峰,Al-Y-Ni-B非晶質合金玻璃形成能力及結晶行為研究,台北科技大學材料工程所,台北,2010。
[60]S. Jana, U. Ramamurtya, K. Chattopadhyay and Y. Kawamura, "Subsurface deformation during Vickers indentation of bulk metallic glasses, "Materials Science and Engineering A, vol. 375-377, 2004, pp. 1191-1195.
[61]S. H. Wang, X. F. Bian, “Effect of Si and Co on the crystallization of Al-Ni-RE amorphous alloys, ”Journal of Alloys and Compounds, vol.453, 2008, pp. 127-130
[62]A. Inoue, N. Matsumoto and T. Masumoto, "Al-Y-Ni-Co Amorphous Alloys with Hight Mechanical Strengths, Wide Supercooled Liquid Region and Large Glass-Forming Capacity, "Materials Transactions, vol. 31, 1990, pp. 493-500.
[63]Musa Gogebakan, “Crystallization Studies of Al85Y10Fe5-xNix (x = 0, 2.5, 5) Alloys, ”Journal of Materials Engineering and Performance, vol. 12, 2003, pp. 521-523.
[64]N. Bassim , C.S. Kiminami, M.J. Kaufmana, M.F. Oliveira, M.N.R.V. Perdigao, W.J. Botta Filho, “Crystallization behavior of amorphous Al84Y9Ni5Co2 alloy,” Materials Science and Engineering A, vol. 304–306, 2001, pp. 332–337.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top